Cargando…

Akt1 Enhances CA916798 Expression through mTOR Pathway

Multi-drug resistance leads to the failure of chemotherapy for cancers. Our previous study showed that overexpression of CA916798 led to multi-drug resistance. However, the underlying mechanisms remain unknown. In the current study, we observed that the levels of phosphorylated AKT, phosphorylated m...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yu-Liang, Zhu, Bing-Jing, Qi, Zhan-Zhong, Wang, Hai-Jing, Zhou, Xiang-Dong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648559/
https://www.ncbi.nlm.nih.gov/pubmed/23667466
http://dx.doi.org/10.1371/journal.pone.0062327
Descripción
Sumario:Multi-drug resistance leads to the failure of chemotherapy for cancers. Our previous study showed that overexpression of CA916798 led to multi-drug resistance. However, the underlying mechanisms remain unknown. In the current study, we observed that the levels of phosphorylated AKT, phosphorylated mTOR and CA916798 all increased in the drug resistant human adenocarcinoma samples and paralleled with the change of drug resistance. The results of immunofluorescence and Co-IP indicated that the positive correlation of CA916798 expression with AKT1 activation might be associated with drug resistance of lung adenocarcinoma. Furthermore, AKT1 stimulated CA916798 expression through mTOR pathway in both A549 and A549/CDDP cell lines, which was also observed in the xenografted tumor in nude mice. The results showed that CA916798 located in the downstream of PI3K/AKT/mTOR pathway. Inhibition of PI3K by LY294002 could efficiently reduce CA916798 expression and tumor size in vivo as well. Additionally, LY294002 combined with rapamycin inhibited CA916798 expression and tumor size stronger than LY294002 alone. Our findings may also provide a new explanation for synergistic anti-tumor effects of PI3K and mTORC1 inhibitors.