Cargando…

Fungal Virulence in a Lepidopteran Model Is an Emergent Property with Deterministic Features

Virulence has been proposed to be an emergent property, which by definition implies that it is not reducible to its components, but this application of a philosophical concept to the host-microbe interaction has not been experimentally tested. The goals of our study were to analyze the correlation o...

Descripción completa

Detalles Bibliográficos
Autores principales: Garcia-Solache, Monica A., Izquierdo-Garcia, David, Smith, Cameron, Bergman, Aviv, Casadevall, Arturo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Microbiology 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648900/
https://www.ncbi.nlm.nih.gov/pubmed/23631914
http://dx.doi.org/10.1128/mBio.00100-13
Descripción
Sumario:Virulence has been proposed to be an emergent property, which by definition implies that it is not reducible to its components, but this application of a philosophical concept to the host-microbe interaction has not been experimentally tested. The goals of our study were to analyze the correlation of the phenotype with the ability to cause disease and to determine the dynamics of an experimental cryptococcal infection in Galleria mellonella and Acanthamoeba castellanii. By studying the outcome of infection as host death, we showed that the dynamics of virulence in the G. mellonella/Cryptococcus neoformans interaction follow a predictable pattern. We also found that the experimental temperature and not the presence of virulence factors was a critical parameter defining the pathogenic potential of cryptococcal species. Our results established that cryptococcal species not considered pathogenic could be pathogens given suitable conditions. Our results support the idea that virulence is an emergent property that cannot be easily predicted by a reductionist approach and yet it behaves as a deterministic system in a lepidopteran cryptococcal infection. These findings provide a road map for evaluating whether host-microbe interactions in other systems are chaotic, deterministic, or stochastic, including those with public health importance.