Cargando…
An Empirical Bayes Optimal Discovery Procedure Based on Semiparametric Hierarchical Mixture Models
Multiple testing has been widely adopted for genome-wide studies such as microarray experiments. For effective gene selection in these genome-wide studies, the optimal discovery procedure (ODP), which maximizes the number of expected true positives for each fixed number of expected false positives,...
Autores principales: | Noma, Hisashi, Matsui, Shigeyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3649332/ https://www.ncbi.nlm.nih.gov/pubmed/23690877 http://dx.doi.org/10.1155/2013/568480 |
Ejemplares similares
-
Empirical Bayes Estimation of Semi-parametric Hierarchical Mixture Models for Unbiased Characterization of Polygenic Disease Architectures
por: Nishino, Jo, et al.
Publicado: (2018) -
Effect-Size Estimation Using Semiparametric Hierarchical Mixture Models in Disease-Association Studies with Neuroimaging Data
por: Emoto, Ryo, et al.
Publicado: (2020) -
Cancer Outlier Analysis Based on Mixture Modeling of Gene Expression Data
por: Mori, Keita, et al.
Publicado: (2013) -
Introduction to empirical processes and semiparametric inference
por: Kosorok, Michael R
Publicado: (2008) -
Semiparametric modelling of two-component mixtures with stochastic dominance
por: Wu, Jingjing, et al.
Publicado: (2022)