Cargando…
Fast Classification of Meat Spoilage Markers Using Nanostructured ZnO Thin Films and Unsupervised Feature Learning
This paper investigates a rapid and accurate detection system for spoilage in meat. We use unsupervised feature learning techniques (stacked restricted Boltzmann machines and auto-encoders) that consider only the transient response from undoped zinc oxide, manganese-doped zinc oxide, and fluorine-do...
Autores principales: | Längkvist, Martin, Coradeschi, Silvia, Loutfi, Amy, Rayappan, John Bosco Balaguru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3649374/ https://www.ncbi.nlm.nih.gov/pubmed/23353140 http://dx.doi.org/10.3390/sl30201578 |
Ejemplares similares
-
Development of an acetone sensor using nanostructured Co(3)O(4) thin films for exhaled breath analysis
por: Srinivasan, Parthasarathy, et al.
Publicado: (2019) -
Nanostructured hybrid ZnO thin films for energy conversion
por: Moya, Mónica, et al.
Publicado: (2011) -
Impact of nanostructured thin ZnO film in ultraviolet protection
por: Sasani Ghamsari, Morteza, et al.
Publicado: (2016) -
ZnO thin films
por: Mele, Paolo
Publicado: (2019) -
Characterization of nanostructured ZnO thin films deposited through vacuum evaporation
por: Alvarado, Jose Alberto, et al.
Publicado: (2015)