Cargando…

Synthesis, insecticidal, and antibacterial activities of novel neonicotinoid analogs with dihydropyridine

BACKGROUND: Nilaparvata lugens, a major pest in rice-growing areas, is extremely difficult to manage. Neonicotinoids have increasingly been used in crop protection and animal health care against N. lugens. To discover new bioactive molecules and pesticides, we combined the active structure of cyanoa...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Yinju, Hu, Deyu, Lv, Mingming, Jin, Linhong, Wu, Jian, Zeng, Song, Yang, Song, Song, Baoan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3649916/
https://www.ncbi.nlm.nih.gov/pubmed/23621983
http://dx.doi.org/10.1186/1752-153X-7-76
Descripción
Sumario:BACKGROUND: Nilaparvata lugens, a major pest in rice-growing areas, is extremely difficult to manage. Neonicotinoids have increasingly been used in crop protection and animal health care against N. lugens. To discover new bioactive molecules and pesticides, we combined the active structure of cyanoacrylates, aromatic aldehydes, and substituted pyridyl (thiazolyl) methyl-2-substituted-methylidene-imidazolidine derivatives for the design and synthesis of a series of novel neonicotinoid analogs with dihydropyridine. RESULTS: A series of neonicotinoid analogs with dihydropyridine were synthesized. Their structures were characterized by IR, (1)H NMR, (13)C NMR, and elemental analysis and their insecticidal and antibacterial activities were assessed. Preliminary biological activity tests showed that all of the title compounds feature insecticidal activities against N. lugens at 500 mg/L. Moreover, some compounds showed promising antibacterial activities against Pseudomonas solanacearum (e.g., Tobacco bacterial wilt and Tomato bacterial wilt) at a dose of 200 mg/L. CONCLUSION: A synthetic route to obtain neonicotinoid analogs with dihydropyridine by the reaction of intermediates 2 (pyridyl (thiazolyl) methyl-2-substituted-methyl-ideneimidazolidine) and intermediates 1 (cyanoacrylates) and different aromatic aldehydes in acetonitrile under reflux conditions is presented. The effects of different solvents, bases, and reaction time on the reaction of 3a were investigated. The results of this study suggest that neonicotinoid analogs with dihydropyridine could cause N. lugens death and restrain P. solanacearum growth.