Cargando…
Bayesian Geostatistical Modeling of Leishmaniasis Incidence in Brazil
BACKGROUND: Leishmaniasis is endemic in 98 countries with an estimated 350 million people at risk and approximately 2 million cases annually. Brazil is one of the most severely affected countries. METHODOLOGY: We applied Bayesian geostatistical negative binomial models to analyze reported incidence...
Autores principales: | Karagiannis-Voules, Dimitrios-Alexios, Scholte, Ronaldo G. C., Guimarães, Luiz H., Utzinger, Jürg, Vounatsou, Penelope |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3649962/ https://www.ncbi.nlm.nih.gov/pubmed/23675545 http://dx.doi.org/10.1371/journal.pntd.0002213 |
Ejemplares similares
-
Bayesian Geostatistical Model-Based Estimates of Soil-Transmitted Helminth Infection in Nigeria, Including Annual Deworming Requirements
por: Oluwole, Akinola S., et al.
Publicado: (2015) -
Bayesian geostatistical modelling of soil-transmitted helminth survey data in the People’s Republic of China
por: Lai, Ying-Si, et al.
Publicado: (2013) -
Spatio-temporal distribution of soil-transmitted helminth infections in Brazil
por: Chammartin, Frédérique, et al.
Publicado: (2014) -
Risk mapping of clonorchiasis in the People’s Republic of China: A systematic review and Bayesian geostatistical analysis
por: Lai, Ying-Si, et al.
Publicado: (2017) -
Bayesian geostatistical modelling of PM(10) and PM(2.5) surface level concentrations in Europe using high-resolution satellite-derived products
por: Beloconi, Anton, et al.
Publicado: (2018)