Cargando…
A Mathematical Model of the Mouse Ventricular Myocyte Contraction
Mathematical models of cardiac function at the cellular level include three major components, such as electrical activity, Ca(2+) dynamics, and cellular shortening. We developed a model for mouse ventricular myocyte contraction which is based on our previously published comprehensive models of actio...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3650013/ https://www.ncbi.nlm.nih.gov/pubmed/23671664 http://dx.doi.org/10.1371/journal.pone.0063141 |
_version_ | 1782269058826108928 |
---|---|
author | Mullins, Paula D. Bondarenko, Vladimir E. |
author_facet | Mullins, Paula D. Bondarenko, Vladimir E. |
author_sort | Mullins, Paula D. |
collection | PubMed |
description | Mathematical models of cardiac function at the cellular level include three major components, such as electrical activity, Ca(2+) dynamics, and cellular shortening. We developed a model for mouse ventricular myocyte contraction which is based on our previously published comprehensive models of action potential and Ca(2+) handling mechanisms. The model was verified with extensive experimental data on mouse myocyte contraction at room temperature. In the model, we implemented variable sarcomere length and indirect modulation of the tropomyosin transition rates by Ca(2+) and troponin. The resulting model described well steady-state force-calcium relationships, dependence of the contraction force on the sarcomere length, time course of the contraction force and myocyte shortening, frequency dependence of the contraction force and cellular contraction, and experimentally measured derivatives of the myocyte length variation. We emphasized the importance of the inclusion of variable sarcomere length into a model for ventricular myocyte contraction. Differences in contraction force and cell shortening for epicardial and endocardial ventricular myocytes were investigated. Model applicability for the experimental studies and model limitations were discussed. |
format | Online Article Text |
id | pubmed-3650013 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36500132013-05-13 A Mathematical Model of the Mouse Ventricular Myocyte Contraction Mullins, Paula D. Bondarenko, Vladimir E. PLoS One Research Article Mathematical models of cardiac function at the cellular level include three major components, such as electrical activity, Ca(2+) dynamics, and cellular shortening. We developed a model for mouse ventricular myocyte contraction which is based on our previously published comprehensive models of action potential and Ca(2+) handling mechanisms. The model was verified with extensive experimental data on mouse myocyte contraction at room temperature. In the model, we implemented variable sarcomere length and indirect modulation of the tropomyosin transition rates by Ca(2+) and troponin. The resulting model described well steady-state force-calcium relationships, dependence of the contraction force on the sarcomere length, time course of the contraction force and myocyte shortening, frequency dependence of the contraction force and cellular contraction, and experimentally measured derivatives of the myocyte length variation. We emphasized the importance of the inclusion of variable sarcomere length into a model for ventricular myocyte contraction. Differences in contraction force and cell shortening for epicardial and endocardial ventricular myocytes were investigated. Model applicability for the experimental studies and model limitations were discussed. Public Library of Science 2013-05-09 /pmc/articles/PMC3650013/ /pubmed/23671664 http://dx.doi.org/10.1371/journal.pone.0063141 Text en © 2013 Mullins, Bondarenko http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Mullins, Paula D. Bondarenko, Vladimir E. A Mathematical Model of the Mouse Ventricular Myocyte Contraction |
title | A Mathematical Model of the Mouse Ventricular Myocyte Contraction |
title_full | A Mathematical Model of the Mouse Ventricular Myocyte Contraction |
title_fullStr | A Mathematical Model of the Mouse Ventricular Myocyte Contraction |
title_full_unstemmed | A Mathematical Model of the Mouse Ventricular Myocyte Contraction |
title_short | A Mathematical Model of the Mouse Ventricular Myocyte Contraction |
title_sort | mathematical model of the mouse ventricular myocyte contraction |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3650013/ https://www.ncbi.nlm.nih.gov/pubmed/23671664 http://dx.doi.org/10.1371/journal.pone.0063141 |
work_keys_str_mv | AT mullinspaulad amathematicalmodelofthemouseventricularmyocytecontraction AT bondarenkovladimire amathematicalmodelofthemouseventricularmyocytecontraction AT mullinspaulad mathematicalmodelofthemouseventricularmyocytecontraction AT bondarenkovladimire mathematicalmodelofthemouseventricularmyocytecontraction |