Cargando…
MicroRNAs and Drug Addiction
Drug addiction is considered a disorder of neuroplasticity in brain reward and cognition systems resulting from aberrant activation of gene expression programs in response to prolonged drug consumption. Non-coding RNAs (ncRNAs) are key regulators of almost all aspects of cellular physiology. MicroRN...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3650656/ https://www.ncbi.nlm.nih.gov/pubmed/23717324 http://dx.doi.org/10.3389/fgene.2013.00043 |
Sumario: | Drug addiction is considered a disorder of neuroplasticity in brain reward and cognition systems resulting from aberrant activation of gene expression programs in response to prolonged drug consumption. Non-coding RNAs (ncRNAs) are key regulators of almost all aspects of cellular physiology. MicroRNAs (miRNAs) are small (∼21–23 nucleotides) ncRNAs transcripts that regulate gene expression at the post-transcriptional level. Recently, miRNAs were shown to play key roles in the drug-induced remodeling of brain reward systems that likely drives the emergence of addiction. Here, we review evidence suggesting that one particular miRNA, miR-212, plays a particularly prominent role in vulnerability to cocaine addiction. We review evidence showing that miR-212 expression is increased in the dorsal striatum of rats that show compulsive-like cocaine-taking behaviors. Increases in miR-212 expression appear to protect against cocaine addiction, as virus-mediated striatal miR-212 overexpression decreases cocaine consumption in rats. Conversely, disruption of striatal miR-212 signaling using an antisense oligonucleotide increases cocaine intake. We also review data that identify two mechanisms by which miR-212 may regulate cocaine intake. First, miR-212 has been shown to amplify striatal cAMP response element binding protein (CREB) signaling through a mechanism involving activation of Raf1 kinase. Second, miR-212 was also shown to regulate cocaine intake by repressing striatal expression of methyl CpG binding protein 2 (MeCP2), consequently decreasing protein levels of brain-derived neurotrophic factor (BDNF). The concerted actions of miR-212 on striatal CREB and MeCP2/BDNF activity greatly attenuate the motivational effects of cocaine. These findings highlight the unique role for miRNAs in simultaneously controlling multiple signaling cascades implicated in addiction. |
---|