Cargando…
Imaging the Fine Structure of a Magnetic Domain Wall in a Ni Nanocylinder
[Image: see text] We present the first experimental imaging of the internal DW structure in 55 and 85 nm diameter Ni nanocylinders, using electron holography combined with micromagnetic calculations. We demonstrate the magnetic transition from a hybrid magnetic state with both vortex and transverse...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2013
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3650658/ https://www.ncbi.nlm.nih.gov/pubmed/23586647 http://dx.doi.org/10.1021/nl400317j |
Sumario: | [Image: see text] We present the first experimental imaging of the internal DW structure in 55 and 85 nm diameter Ni nanocylinders, using electron holography combined with micromagnetic calculations. We demonstrate the magnetic transition from a hybrid magnetic state with both vortex and transverse DW in 85 nm diameter Ni nanocylinders to a pure transverse wall in thinner nanowires. This is particularly important as DWs in nanocylinders are model systems to go beyond the classical Walker limit. |
---|