Cargando…
Image Texture Predicts Avian Density and Species Richness
For decades, ecologists have measured habitat attributes in the field to understand and predict patterns of animal distribution and abundance. However, the scale of inference possible from field measured data is typically limited because large-scale data collection is rarely feasible. This is proble...
Autores principales: | Wood, Eric M., Pidgeon, Anna M., Radeloff, Volker C., Keuler, Nicholas S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651168/ https://www.ncbi.nlm.nih.gov/pubmed/23675463 http://dx.doi.org/10.1371/journal.pone.0063211 |
Ejemplares similares
-
Modelling patterns of pollinator species richness and diversity using satellite image texture
por: Hofmann, Sylvia, et al.
Publicado: (2017) -
Opportunities for the application of advanced remotely-sensed data in ecological studies of terrestrial animal movement
por: Neumann, Wiebke, et al.
Publicado: (2015) -
Inferring Species Richness and Turnover by Statistical Multiresolution Texture Analysis of Satellite Imagery
por: Convertino, Matteo, et al.
Publicado: (2012) -
Current and Future Land Use around a Nationwide Protected Area Network
por: Hamilton, Christopher M., et al.
Publicado: (2013) -
Vegetation productivity summarized by the Dynamic Habitat Indices explains broad-scale patterns of moose abundance across Russia
por: Razenkova, Elena, et al.
Publicado: (2020)