Cargando…
A Multilevel Approach to Estimating Small Area Childhood Obesity Prevalence at the Census Block-Group Level
INTRODUCTION: Traditional survey methods for obtaining nationwide small-area estimates (SAEs) of childhood obesity are costly. This study applied a geocoded national health survey in a multilevel modeling framework to estimate prevalence of childhood obesity at the census block-group level. METHODS:...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Centers for Disease Control and Prevention
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3652721/ https://www.ncbi.nlm.nih.gov/pubmed/23639763 http://dx.doi.org/10.5888/pcd10.120252 |
_version_ | 1782269337424363520 |
---|---|
author | Zhang, Xingyou Onufrak, Stephen Holt, James B. Croft, Janet B. |
author_facet | Zhang, Xingyou Onufrak, Stephen Holt, James B. Croft, Janet B. |
author_sort | Zhang, Xingyou |
collection | PubMed |
description | INTRODUCTION: Traditional survey methods for obtaining nationwide small-area estimates (SAEs) of childhood obesity are costly. This study applied a geocoded national health survey in a multilevel modeling framework to estimate prevalence of childhood obesity at the census block-group level. METHODS: We constructed a multilevel logistic regression model to evaluate the influence of individual demographic characteristics, zip code, county, and state on the childhood obesity measures from the 2007 National Survey of Children’s Health. The obesity risk for a child in each census block group was then estimated on the basis of this multilevel model. We compared direct survey and model-based SAEs to evaluate the model specification. RESULTS: Multilevel models in this study explained about 60% of state-level variances associated with childhood obesity, 82.8% to 86.5% of county-level, and 93.1% of zip code-level. The 95% confidence intervals of block- group level SAEs have a wide range (0.795-20.0), a low median of 2.02, and a mean of 2.12. The model-based SAEs of childhood obesity prevalence ranged from 2.3% to 54.7% with a median of 16.0% at the block-group level. CONCLUSION: The geographic variances among census block groups, counties, and states demonstrate that locale may be as significant as individual characteristics such as race/ethnicity in the development of the childhood obesity epidemic. Our estimates provide data to identify priority areas for local health programs and to establish feasible local intervention goals. Model-based SAEs of population health outcomes could be a tool of public health assessment and surveillance. |
format | Online Article Text |
id | pubmed-3652721 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Centers for Disease Control and Prevention |
record_format | MEDLINE/PubMed |
spelling | pubmed-36527212013-05-20 A Multilevel Approach to Estimating Small Area Childhood Obesity Prevalence at the Census Block-Group Level Zhang, Xingyou Onufrak, Stephen Holt, James B. Croft, Janet B. Prev Chronic Dis Original Research INTRODUCTION: Traditional survey methods for obtaining nationwide small-area estimates (SAEs) of childhood obesity are costly. This study applied a geocoded national health survey in a multilevel modeling framework to estimate prevalence of childhood obesity at the census block-group level. METHODS: We constructed a multilevel logistic regression model to evaluate the influence of individual demographic characteristics, zip code, county, and state on the childhood obesity measures from the 2007 National Survey of Children’s Health. The obesity risk for a child in each census block group was then estimated on the basis of this multilevel model. We compared direct survey and model-based SAEs to evaluate the model specification. RESULTS: Multilevel models in this study explained about 60% of state-level variances associated with childhood obesity, 82.8% to 86.5% of county-level, and 93.1% of zip code-level. The 95% confidence intervals of block- group level SAEs have a wide range (0.795-20.0), a low median of 2.02, and a mean of 2.12. The model-based SAEs of childhood obesity prevalence ranged from 2.3% to 54.7% with a median of 16.0% at the block-group level. CONCLUSION: The geographic variances among census block groups, counties, and states demonstrate that locale may be as significant as individual characteristics such as race/ethnicity in the development of the childhood obesity epidemic. Our estimates provide data to identify priority areas for local health programs and to establish feasible local intervention goals. Model-based SAEs of population health outcomes could be a tool of public health assessment and surveillance. Centers for Disease Control and Prevention 2013-05-02 /pmc/articles/PMC3652721/ /pubmed/23639763 http://dx.doi.org/10.5888/pcd10.120252 Text en https://creativecommons.org/licenses/by/4.0/This is a publication of the U.S. Government. This publication is in the public domain and is therefore without copyright. All text from this work may be reprinted freely. Use of these materials should be properly cited. |
spellingShingle | Original Research Zhang, Xingyou Onufrak, Stephen Holt, James B. Croft, Janet B. A Multilevel Approach to Estimating Small Area Childhood Obesity Prevalence at the Census Block-Group Level |
title | A Multilevel Approach to Estimating Small Area Childhood Obesity Prevalence at the Census Block-Group Level |
title_full | A Multilevel Approach to Estimating Small Area Childhood Obesity Prevalence at the Census Block-Group Level |
title_fullStr | A Multilevel Approach to Estimating Small Area Childhood Obesity Prevalence at the Census Block-Group Level |
title_full_unstemmed | A Multilevel Approach to Estimating Small Area Childhood Obesity Prevalence at the Census Block-Group Level |
title_short | A Multilevel Approach to Estimating Small Area Childhood Obesity Prevalence at the Census Block-Group Level |
title_sort | multilevel approach to estimating small area childhood obesity prevalence at the census block-group level |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3652721/ https://www.ncbi.nlm.nih.gov/pubmed/23639763 http://dx.doi.org/10.5888/pcd10.120252 |
work_keys_str_mv | AT zhangxingyou amultilevelapproachtoestimatingsmallareachildhoodobesityprevalenceatthecensusblockgrouplevel AT onufrakstephen amultilevelapproachtoestimatingsmallareachildhoodobesityprevalenceatthecensusblockgrouplevel AT holtjamesb amultilevelapproachtoestimatingsmallareachildhoodobesityprevalenceatthecensusblockgrouplevel AT croftjanetb amultilevelapproachtoestimatingsmallareachildhoodobesityprevalenceatthecensusblockgrouplevel AT zhangxingyou multilevelapproachtoestimatingsmallareachildhoodobesityprevalenceatthecensusblockgrouplevel AT onufrakstephen multilevelapproachtoestimatingsmallareachildhoodobesityprevalenceatthecensusblockgrouplevel AT holtjamesb multilevelapproachtoestimatingsmallareachildhoodobesityprevalenceatthecensusblockgrouplevel AT croftjanetb multilevelapproachtoestimatingsmallareachildhoodobesityprevalenceatthecensusblockgrouplevel |