Cargando…
Identifying effective connectivity parameters in simulated fMRI: a direct comparison of switching linear dynamic system, stochastic dynamic causal, and multivariate autoregressive models
The number and variety of connectivity estimation methods is likely to continue to grow over the coming decade. Comparisons between methods are necessary to prune this growth to only the most accurate and robust methods. However, the nature of connectivity is elusive with different methods potential...
Autores principales: | Smith, Jason F., Chen, Kewei, Pillai, Ajay S., Horwitz, Barry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653105/ https://www.ncbi.nlm.nih.gov/pubmed/23717258 http://dx.doi.org/10.3389/fnins.2013.00070 |
Ejemplares similares
-
Effective Connectivity Modeling for fMRI: Six Issues and Possible Solutions Using Linear Dynamic Systems
por: Smith, Jason F., et al.
Publicado: (2012) -
High-dimensional multivariate autoregressive model estimation of human electrophysiological data using fMRI priors
por: Nagle, Alliot, et al.
Publicado: (2023) -
Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI()
por: Koush, Yury, et al.
Publicado: (2013) -
Stochastic dynamic causal modelling of fMRI data: Should we care about neural noise?
por: Daunizeau, J., et al.
Publicado: (2012) -
Identifying Abnormal Connectivity in Patients Using Dynamic Causal Modeling of fMRI Responses
por: Seghier, Mohamed L., et al.
Publicado: (2010)