Cargando…

Using diffusion anisotropy to characterize neuronal morphology in gray matter: the orientation distribution of axons and dendrites in the NeuroMorpho.org database

Accurate mathematical modeling is integral to the ability to interpret diffusion magnetic resonance (MR) imaging data in terms of cellular structure in brain gray matter (GM). In previous work, we derived expressions to facilitate the determination of the orientation distribution of axonal and dendr...

Descripción completa

Detalles Bibliográficos
Autores principales: Hansen, Mikkel B., Jespersen, Sune N., Leigland, Lindsey A., Kroenke, Christopher D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653140/
https://www.ncbi.nlm.nih.gov/pubmed/23675327
http://dx.doi.org/10.3389/fnint.2013.00031
_version_ 1782269391529836544
author Hansen, Mikkel B.
Jespersen, Sune N.
Leigland, Lindsey A.
Kroenke, Christopher D.
author_facet Hansen, Mikkel B.
Jespersen, Sune N.
Leigland, Lindsey A.
Kroenke, Christopher D.
author_sort Hansen, Mikkel B.
collection PubMed
description Accurate mathematical modeling is integral to the ability to interpret diffusion magnetic resonance (MR) imaging data in terms of cellular structure in brain gray matter (GM). In previous work, we derived expressions to facilitate the determination of the orientation distribution of axonal and dendritic processes from diffusion MR data. Here we utilize neuron reconstructions available in the NeuroMorpho database (www.neuromorpho.org) to assess the validity of the model we proposed by comparing morphological properties of the neurons to predictions based on diffusion MR simulations using the reconstructed neuron models. Initially, the method for directly determining neurite orientation distributions is shown to not depend on the line length used to quantify cylindrical elements. Further variability in neuron morphology is characterized relative to neuron type, species, and laboratory of origin. Subsequently, diffusion MR signals are simulated based on human neocortical neuron reconstructions. This reveals a bias in which diffusion MR data predict neuron orientation distributions to have artificially low anisotropy. This bias is shown to arise from shortcomings (already at relatively low diffusion weighting) in the Gaussian approximation of diffusion, in the presence of restrictive barriers, and data analysis methods involving higher moments of the cumulant expansion are shown to be capable of reducing the magnitude of the observed bias.
format Online
Article
Text
id pubmed-3653140
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-36531402013-05-14 Using diffusion anisotropy to characterize neuronal morphology in gray matter: the orientation distribution of axons and dendrites in the NeuroMorpho.org database Hansen, Mikkel B. Jespersen, Sune N. Leigland, Lindsey A. Kroenke, Christopher D. Front Integr Neurosci Neuroscience Accurate mathematical modeling is integral to the ability to interpret diffusion magnetic resonance (MR) imaging data in terms of cellular structure in brain gray matter (GM). In previous work, we derived expressions to facilitate the determination of the orientation distribution of axonal and dendritic processes from diffusion MR data. Here we utilize neuron reconstructions available in the NeuroMorpho database (www.neuromorpho.org) to assess the validity of the model we proposed by comparing morphological properties of the neurons to predictions based on diffusion MR simulations using the reconstructed neuron models. Initially, the method for directly determining neurite orientation distributions is shown to not depend on the line length used to quantify cylindrical elements. Further variability in neuron morphology is characterized relative to neuron type, species, and laboratory of origin. Subsequently, diffusion MR signals are simulated based on human neocortical neuron reconstructions. This reveals a bias in which diffusion MR data predict neuron orientation distributions to have artificially low anisotropy. This bias is shown to arise from shortcomings (already at relatively low diffusion weighting) in the Gaussian approximation of diffusion, in the presence of restrictive barriers, and data analysis methods involving higher moments of the cumulant expansion are shown to be capable of reducing the magnitude of the observed bias. Frontiers Media S.A. 2013-05-14 /pmc/articles/PMC3653140/ /pubmed/23675327 http://dx.doi.org/10.3389/fnint.2013.00031 Text en Copyright © 2013 Hansen, Jespersen, Leigland and Kroenke. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.
spellingShingle Neuroscience
Hansen, Mikkel B.
Jespersen, Sune N.
Leigland, Lindsey A.
Kroenke, Christopher D.
Using diffusion anisotropy to characterize neuronal morphology in gray matter: the orientation distribution of axons and dendrites in the NeuroMorpho.org database
title Using diffusion anisotropy to characterize neuronal morphology in gray matter: the orientation distribution of axons and dendrites in the NeuroMorpho.org database
title_full Using diffusion anisotropy to characterize neuronal morphology in gray matter: the orientation distribution of axons and dendrites in the NeuroMorpho.org database
title_fullStr Using diffusion anisotropy to characterize neuronal morphology in gray matter: the orientation distribution of axons and dendrites in the NeuroMorpho.org database
title_full_unstemmed Using diffusion anisotropy to characterize neuronal morphology in gray matter: the orientation distribution of axons and dendrites in the NeuroMorpho.org database
title_short Using diffusion anisotropy to characterize neuronal morphology in gray matter: the orientation distribution of axons and dendrites in the NeuroMorpho.org database
title_sort using diffusion anisotropy to characterize neuronal morphology in gray matter: the orientation distribution of axons and dendrites in the neuromorpho.org database
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653140/
https://www.ncbi.nlm.nih.gov/pubmed/23675327
http://dx.doi.org/10.3389/fnint.2013.00031
work_keys_str_mv AT hansenmikkelb usingdiffusionanisotropytocharacterizeneuronalmorphologyingraymattertheorientationdistributionofaxonsanddendritesintheneuromorphoorgdatabase
AT jespersensunen usingdiffusionanisotropytocharacterizeneuronalmorphologyingraymattertheorientationdistributionofaxonsanddendritesintheneuromorphoorgdatabase
AT leiglandlindseya usingdiffusionanisotropytocharacterizeneuronalmorphologyingraymattertheorientationdistributionofaxonsanddendritesintheneuromorphoorgdatabase
AT kroenkechristopherd usingdiffusionanisotropytocharacterizeneuronalmorphologyingraymattertheorientationdistributionofaxonsanddendritesintheneuromorphoorgdatabase