Cargando…

Roles of lipid metabolism in keloid development

Keloids are common cutaneous pathological scars that are characterised by the histological accumulation of fibroblasts, collagen fibres, and clinically significant invasive growth. Although increasing lines of research on keloids have revealed genetic and environmental factors that contribute to the...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Chenyu, Ogawa, Rei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653711/
https://www.ncbi.nlm.nih.gov/pubmed/23634948
http://dx.doi.org/10.1186/1476-511X-12-60
Descripción
Sumario:Keloids are common cutaneous pathological scars that are characterised by the histological accumulation of fibroblasts, collagen fibres, and clinically significant invasive growth. Although increasing lines of research on keloids have revealed genetic and environmental factors that contribute to their formation, the etiology of these scars remains unclear. Several studies have suggested the involvement of lipid metabolism, from a nutritional point of view. However, the role that lipid metabolism plays in the pathogenesis and progression of keloids has not previously been reviewed. The progress that has been made in understanding the roles of the pro- and anti-inflammatory lipid mediators in inflammation, and how they relate to the formation and progression of keloids, is also outlined. In particular, the possible relationships between mechanotransduction and lipid metabolites in keloids are explored. Mechanotransduction is the process by which physical forces are converted into biochemical signals that are then integrated into cellular responses. It is possible that lipid rafts and caveolae provide the location of lipid signaling and interactions between these signaling pathways and mechanotransduction. Moreover, interactions between lipid signaling pathway molecules and mechanotransduction molecules have been observed. A better understanding of the lipid profile changes and the functional roles lipid metabolism plays in keloids will help to identify target molecules for the development of novel interventions that can prevent, reduce, or even reverse pathological scar formation and/or progression.