Cargando…
Population Divergence in Venom Bioactivities of Elapid Snake Pseudonaja textilis: Role of Procoagulant Proteins in Rapid Rodent Prey Incapacitation
This study looked at how toxic proteins in venoms of adult Australian eastern Brown snakes Pseudonaja textilis from South Australian and Queensland populations interact with physiological functions of the lab SD rat Rattus norvegicus. Circulatory collapse and incoagulable blood occurred instantly af...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653870/ https://www.ncbi.nlm.nih.gov/pubmed/23691135 http://dx.doi.org/10.1371/journal.pone.0063988 |
_version_ | 1782269464696324096 |
---|---|
author | Skejić, Jure Hodgson, Wayne C. |
author_facet | Skejić, Jure Hodgson, Wayne C. |
author_sort | Skejić, Jure |
collection | PubMed |
description | This study looked at how toxic proteins in venoms of adult Australian eastern Brown snakes Pseudonaja textilis from South Australian and Queensland populations interact with physiological functions of the lab SD rat Rattus norvegicus. Circulatory collapse and incoagulable blood occurred instantly after injection of venom under the dorsal skin of anaesthetised and mechanically ventilated rats in an imitation of a P. textilis bite. Intravenous injection of purified P. textilis (Mackay, QLD) venom prothrombin activator proteins caused instant failure of circulation, testifying of high toxicity of these proteins and suggesting their role in rapid incapacitation of rodent prey. The hypothesis is further supported by circulatory collapse occurring instantly despite artificial respiration in envenomed rats and the finding of extremely high venom procoagulant potency in rat plasma. LC-MS and physiology assays revealed divergent venom composition and biological activity of South Australian (Barossa locality) and Queensland (Mackay locality) populations, which may be driven by selection for different prey. The Queensland venom of P. textilis was found to be more procoagulant and to exhibit predominately presynaptic neurotoxicity, while the South Australian venom contained diverse postsynaptic type II and III α-neurotoxins in addition to the presynaptic neurotoxins and caused significantly faster onset of neuromuscular blockade in the rat phrenic nerve-diaphragm preparation. LC-MS analysis found evidence of multiple coagulation factor X-like proteins in P. textilis venoms, including a match to P. textilis coagulation factor X isoform 2, previously known to be expressed only in the liver. |
format | Online Article Text |
id | pubmed-3653870 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36538702013-05-20 Population Divergence in Venom Bioactivities of Elapid Snake Pseudonaja textilis: Role of Procoagulant Proteins in Rapid Rodent Prey Incapacitation Skejić, Jure Hodgson, Wayne C. PLoS One Research Article This study looked at how toxic proteins in venoms of adult Australian eastern Brown snakes Pseudonaja textilis from South Australian and Queensland populations interact with physiological functions of the lab SD rat Rattus norvegicus. Circulatory collapse and incoagulable blood occurred instantly after injection of venom under the dorsal skin of anaesthetised and mechanically ventilated rats in an imitation of a P. textilis bite. Intravenous injection of purified P. textilis (Mackay, QLD) venom prothrombin activator proteins caused instant failure of circulation, testifying of high toxicity of these proteins and suggesting their role in rapid incapacitation of rodent prey. The hypothesis is further supported by circulatory collapse occurring instantly despite artificial respiration in envenomed rats and the finding of extremely high venom procoagulant potency in rat plasma. LC-MS and physiology assays revealed divergent venom composition and biological activity of South Australian (Barossa locality) and Queensland (Mackay locality) populations, which may be driven by selection for different prey. The Queensland venom of P. textilis was found to be more procoagulant and to exhibit predominately presynaptic neurotoxicity, while the South Australian venom contained diverse postsynaptic type II and III α-neurotoxins in addition to the presynaptic neurotoxins and caused significantly faster onset of neuromuscular blockade in the rat phrenic nerve-diaphragm preparation. LC-MS analysis found evidence of multiple coagulation factor X-like proteins in P. textilis venoms, including a match to P. textilis coagulation factor X isoform 2, previously known to be expressed only in the liver. Public Library of Science 2013-05-14 /pmc/articles/PMC3653870/ /pubmed/23691135 http://dx.doi.org/10.1371/journal.pone.0063988 Text en © 2013 Skejić, Hodgson http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Skejić, Jure Hodgson, Wayne C. Population Divergence in Venom Bioactivities of Elapid Snake Pseudonaja textilis: Role of Procoagulant Proteins in Rapid Rodent Prey Incapacitation |
title | Population Divergence in Venom Bioactivities of Elapid Snake Pseudonaja textilis: Role of Procoagulant Proteins in Rapid Rodent Prey Incapacitation |
title_full | Population Divergence in Venom Bioactivities of Elapid Snake Pseudonaja textilis: Role of Procoagulant Proteins in Rapid Rodent Prey Incapacitation |
title_fullStr | Population Divergence in Venom Bioactivities of Elapid Snake Pseudonaja textilis: Role of Procoagulant Proteins in Rapid Rodent Prey Incapacitation |
title_full_unstemmed | Population Divergence in Venom Bioactivities of Elapid Snake Pseudonaja textilis: Role of Procoagulant Proteins in Rapid Rodent Prey Incapacitation |
title_short | Population Divergence in Venom Bioactivities of Elapid Snake Pseudonaja textilis: Role of Procoagulant Proteins in Rapid Rodent Prey Incapacitation |
title_sort | population divergence in venom bioactivities of elapid snake pseudonaja textilis: role of procoagulant proteins in rapid rodent prey incapacitation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653870/ https://www.ncbi.nlm.nih.gov/pubmed/23691135 http://dx.doi.org/10.1371/journal.pone.0063988 |
work_keys_str_mv | AT skejicjure populationdivergenceinvenombioactivitiesofelapidsnakepseudonajatextilisroleofprocoagulantproteinsinrapidrodentpreyincapacitation AT hodgsonwaynec populationdivergenceinvenombioactivitiesofelapidsnakepseudonajatextilisroleofprocoagulantproteinsinrapidrodentpreyincapacitation |