Cargando…

DEVD-Based Hydrogelator Minimizes Cellular Apoptosis Induction

Herein, we report the rational design of a DEVD-based heptapeptide hydrogelator 1 which is susceptible to caspase-3 (CASP3), and its isomeric control hydrogelator 2 with a DEDV-based heptapeptide sequence. Self-assembly of 1 in water results in flexuous, long nanofibers to form supramolecular hydrog...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, An-Ming, Wang, Wei-Juan, Mei, Bin, Hu, Wang-Lai, Wu, Mian, Liang, Gao-Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654485/
https://www.ncbi.nlm.nih.gov/pubmed/23673405
http://dx.doi.org/10.1038/srep01848
Descripción
Sumario:Herein, we report the rational design of a DEVD-based heptapeptide hydrogelator 1 which is susceptible to caspase-3 (CASP3), and its isomeric control hydrogelator 2 with a DEDV-based heptapeptide sequence. Self-assembly of 1 in water results in flexuous, long nanofibers to form supramolecular hydrogel I with higher mechanical strength than that of hydrogel II which is composed of rigid, short nanofibers of 2. In vitro enzymatic analysis indicated that 1 is susceptive to CASP3 while 2 is not. 3-(4,5-dimethylthiazol-2-yl) 2,5 diphenyl tetrazolium bromide (MTT) and Western blot analyses indicated that DEDV-based hydrogelator 2 induces cell death via apoptotic pathway while the DEVD-based hydrogelator 1 minimizes cellular apoptosis induction.