Cargando…

Gene Therapy of Multiple Sclerosis Using Interferon β-Secreting Human Bone Marrow Mesenchymal Stem Cells

Interferon-beta (IFN-β), a well-established standard treatment for multiple sclerosis (MS), has proved to exhibit clinical efficacy. In this study, we first evaluated the therapeutic effects for MS using human bone marrow-derived mesenchymal stem cells (hBM-MSCs) as delivery vehicles with lesion-tar...

Descripción completa

Detalles Bibliográficos
Autores principales: Ryu, Chung Heon, Park, Kwang Ywel, Hou, Yun, Jeong, Chang Hyun, Kim, Seong Muk, Jeun, Sin-Soo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654641/
https://www.ncbi.nlm.nih.gov/pubmed/23710456
http://dx.doi.org/10.1155/2013/696738
Descripción
Sumario:Interferon-beta (IFN-β), a well-established standard treatment for multiple sclerosis (MS), has proved to exhibit clinical efficacy. In this study, we first evaluated the therapeutic effects for MS using human bone marrow-derived mesenchymal stem cells (hBM-MSCs) as delivery vehicles with lesion-targeting capability and IFN-β as therapeutic gene. We also engineered hBM-MSCs to secret IFN-β (MSCs-IFNβ) via adenoviral transduction and confirmed the secretory capacity of MSCs-IFNβ by an ELISA assay. MSCs-IFNβ-treated mice showed inhibition of experimental autoimmune encephalomyelitis (EAE) onset, and the maximum and average score for all animals in each group was significantly lower in the MSCs-IFNβ-treated EAE mice when compared with the MSCs-GFP-treated EAE mice. Inflammatory infiltration and demyelination in the lumbar spinal cord also significantly decreased in the MSCs-IFNβ-treated EAE mice compared to PBS- or MSCs-GFP-treated EAE mice. Moreover, MSCs-IFNβ treatment enhanced the immunomodulatory effects, which suppressed proinflammatory cytokines (IFN-γ and TNF-α) and conversely increased anti-inflammatory cytokines (IL-4 and IL-10). Importantly, injected MSCs-IFNβ migrated into inflamed CNS and significantly reduced further injury of blood-brain barrier (BBB) permeability in EAE mice. Thus, our results provide the rationale for designing novel experimental protocols to enhance the therapeutic effects for MS using hBM-MSCs as an effective gene vehicle to deliver the therapeutic cytokines.