Cargando…
Nitric Oxide Not Apoptosis Mediates Differential Killing of Mycobacterium bovis in Bovine Macrophages
To identify the resistance phenotype against Mycobacterium bovis in cattle, we used a bactericidal assay that has been considered a marker of this trait. Three of 24 cows (12.5%) were phenotyped as resistant and 21 as susceptible. Resistance of bovine macrophages (MΦ) to BCG challenge was evaluated...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3655162/ https://www.ncbi.nlm.nih.gov/pubmed/23691050 http://dx.doi.org/10.1371/journal.pone.0063464 |
_version_ | 1782269836952338432 |
---|---|
author | Esquivel-Solís, Hugo Vallecillo, Antonio J. Benítez-Guzmán, Alejandro Adams, L. Garry López-Vidal, Yolanda Gutiérrez-Pabello, José A. |
author_facet | Esquivel-Solís, Hugo Vallecillo, Antonio J. Benítez-Guzmán, Alejandro Adams, L. Garry López-Vidal, Yolanda Gutiérrez-Pabello, José A. |
author_sort | Esquivel-Solís, Hugo |
collection | PubMed |
description | To identify the resistance phenotype against Mycobacterium bovis in cattle, we used a bactericidal assay that has been considered a marker of this trait. Three of 24 cows (12.5%) were phenotyped as resistant and 21 as susceptible. Resistance of bovine macrophages (MΦ) to BCG challenge was evaluated for its association with SLC11A1 GT microsatellite polymorphisms within 3′UTR region. Twenty-three cows (95.8%) had a GT(13) genotype, reported as resistant, consequently the SLC11A1polymorphism was not in agreement with our bactericidal assay results. MΦ of cows with resistant or susceptible phenotype were challenged in vitro with virulent M. bovis field strain or BCG, and nitric oxide production, bacterial killing and apoptosis induction were measured in resting and LPS-primed states. M. bovis field strain induced more apoptosis than BCG, although the difference was not significant. Resistant MΦ controlled better the replication of M. bovis (P<0.01), produced more nitric oxide (P<0.05) and were slightly more prone to undergo apoptosis than susceptible cells. LPS pretreatment of MΦ enhanced all the functional parameters analyzed. Inhibition of nitric oxide production with n (G)-monomethyl-L-arginine monoacetate enhanced replication of M. bovis but did not modify apoptosis rates in both resistant and susceptible MΦ. We conclude that nitric oxide production not apoptosis is a major determinant of macrophage resistance to M. bovis infection in cattle and that the influence of SLC11A1 gene 3′UTR polymorphism is not associated with this event. |
format | Online Article Text |
id | pubmed-3655162 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36551622013-05-20 Nitric Oxide Not Apoptosis Mediates Differential Killing of Mycobacterium bovis in Bovine Macrophages Esquivel-Solís, Hugo Vallecillo, Antonio J. Benítez-Guzmán, Alejandro Adams, L. Garry López-Vidal, Yolanda Gutiérrez-Pabello, José A. PLoS One Research Article To identify the resistance phenotype against Mycobacterium bovis in cattle, we used a bactericidal assay that has been considered a marker of this trait. Three of 24 cows (12.5%) were phenotyped as resistant and 21 as susceptible. Resistance of bovine macrophages (MΦ) to BCG challenge was evaluated for its association with SLC11A1 GT microsatellite polymorphisms within 3′UTR region. Twenty-three cows (95.8%) had a GT(13) genotype, reported as resistant, consequently the SLC11A1polymorphism was not in agreement with our bactericidal assay results. MΦ of cows with resistant or susceptible phenotype were challenged in vitro with virulent M. bovis field strain or BCG, and nitric oxide production, bacterial killing and apoptosis induction were measured in resting and LPS-primed states. M. bovis field strain induced more apoptosis than BCG, although the difference was not significant. Resistant MΦ controlled better the replication of M. bovis (P<0.01), produced more nitric oxide (P<0.05) and were slightly more prone to undergo apoptosis than susceptible cells. LPS pretreatment of MΦ enhanced all the functional parameters analyzed. Inhibition of nitric oxide production with n (G)-monomethyl-L-arginine monoacetate enhanced replication of M. bovis but did not modify apoptosis rates in both resistant and susceptible MΦ. We conclude that nitric oxide production not apoptosis is a major determinant of macrophage resistance to M. bovis infection in cattle and that the influence of SLC11A1 gene 3′UTR polymorphism is not associated with this event. Public Library of Science 2013-05-15 /pmc/articles/PMC3655162/ /pubmed/23691050 http://dx.doi.org/10.1371/journal.pone.0063464 Text en © 2013 Esquivel-Solís et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Esquivel-Solís, Hugo Vallecillo, Antonio J. Benítez-Guzmán, Alejandro Adams, L. Garry López-Vidal, Yolanda Gutiérrez-Pabello, José A. Nitric Oxide Not Apoptosis Mediates Differential Killing of Mycobacterium bovis in Bovine Macrophages |
title | Nitric Oxide Not Apoptosis Mediates Differential Killing of Mycobacterium bovis in Bovine Macrophages |
title_full | Nitric Oxide Not Apoptosis Mediates Differential Killing of Mycobacterium bovis in Bovine Macrophages |
title_fullStr | Nitric Oxide Not Apoptosis Mediates Differential Killing of Mycobacterium bovis in Bovine Macrophages |
title_full_unstemmed | Nitric Oxide Not Apoptosis Mediates Differential Killing of Mycobacterium bovis in Bovine Macrophages |
title_short | Nitric Oxide Not Apoptosis Mediates Differential Killing of Mycobacterium bovis in Bovine Macrophages |
title_sort | nitric oxide not apoptosis mediates differential killing of mycobacterium bovis in bovine macrophages |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3655162/ https://www.ncbi.nlm.nih.gov/pubmed/23691050 http://dx.doi.org/10.1371/journal.pone.0063464 |
work_keys_str_mv | AT esquivelsolishugo nitricoxidenotapoptosismediatesdifferentialkillingofmycobacteriumbovisinbovinemacrophages AT vallecilloantonioj nitricoxidenotapoptosismediatesdifferentialkillingofmycobacteriumbovisinbovinemacrophages AT benitezguzmanalejandro nitricoxidenotapoptosismediatesdifferentialkillingofmycobacteriumbovisinbovinemacrophages AT adamslgarry nitricoxidenotapoptosismediatesdifferentialkillingofmycobacteriumbovisinbovinemacrophages AT lopezvidalyolanda nitricoxidenotapoptosismediatesdifferentialkillingofmycobacteriumbovisinbovinemacrophages AT gutierrezpabellojosea nitricoxidenotapoptosismediatesdifferentialkillingofmycobacteriumbovisinbovinemacrophages |