Cargando…
Coercively Adjusted Auto Regression Model for Forecasting in Epilepsy EEG
Recently, data with complex characteristics such as epilepsy electroencephalography (EEG) time series has emerged. Epilepsy EEG data has special characteristics including nonlinearity, nonnormality, and nonperiodicity. Therefore, it is important to find a suitable forecasting method that covers thes...
Autores principales: | Kim, Sun-Hee, Faloutsos, Christos, Yang, Hyung-Jeong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3655454/ https://www.ncbi.nlm.nih.gov/pubmed/23710252 http://dx.doi.org/10.1155/2013/545613 |
Ejemplares similares
-
Supervised filters for EEG signal in naturally occurring epilepsy forecasting
por: Muñoz-Almaraz, Francisco Javier, et al.
Publicado: (2017) -
Forecasting the incidence of tuberculosis in China using the seasonal auto-regressive integrated moving average (SARIMA) model
por: Mao, Qiang, et al.
Publicado: (2018) -
Application of a New Hybrid Model with Seasonal Auto-Regressive Integrated Moving Average (ARIMA) and Nonlinear Auto-Regressive Neural Network (NARNN) in Forecasting Incidence Cases of HFMD in Shenzhen, China
por: Yu, Lijing, et al.
Publicado: (2014) -
Forecasting with dynamic regression models /
por: Pankratz, Alan, 1944-
Publicado: (1991) -
Forecasting with Dynamic Regression Models
por: Pankratz, Alan
Publicado: (2012)