Cargando…
Artemisinin resistance in rodent malaria - mutation in the AP2 adaptor μ-chain suggests involvement of endocytosis and membrane protein trafficking
BACKGROUND: The control of malaria, caused by Plasmodium falciparum, is hampered by the relentless evolution of drug resistance. Because artemisinin derivatives are now used in the most effective anti-malarial therapy, resistance to artemisinin would be catastrophic. Indeed, studies suggest that art...
Autores principales: | Henriques, Gisela, Martinelli, Axel, Rodrigues, Louise, Modrzynska, Katarzyna, Fawcett, Richard, Houston, Douglas R, Borges, Sofia T, d’Alessandro, Umberto, Tinto, Halidou, Karema, Corine, Hunt, Paul, Cravo, Pedro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3655824/ https://www.ncbi.nlm.nih.gov/pubmed/23561245 http://dx.doi.org/10.1186/1475-2875-12-118 |
Ejemplares similares
-
AP-3 adaptor complex-mediated vesicle trafficking
por: Ma, Zhuo, et al.
Publicado: (2021) -
Identification of genetic markers of resistance to Artemisinin Combination Therapy in the rodent model Plasmodium chabaudi
por: Rodrigues, Louise A, et al.
Publicado: (2010) -
VGLUT2 Trafficking Is Differentially Regulated by Adaptor Proteins AP-1 and AP-3
por: Li, Haiyan, et al.
Publicado: (2017) -
Experimental Evolution of Resistance to Artemisinin Combination Therapy Results in Amplification of the mdr1 Gene in a Rodent Malaria Parasite
por: Rodrigues, Louise A., et al.
Publicado: (2010) -
Clathrin and clathrin adaptor AP-1 control apical trafficking of megalin in the biosynthetic and recycling routes
por: Gravotta, Diego, et al.
Publicado: (2019)