Cargando…

Neural Dynamics of Attentional Cross-Modality Control

Attentional networks that integrate many cortical and subcortical elements dynamically control mental processes to focus on specific events and make a decision. The resources of attentional processing are finite. Nevertheless, we often face situations in which it is necessary to simultaneously proce...

Descripción completa

Detalles Bibliográficos
Autores principales: Rabinovich, Mikhail, Tristan, Irma, Varona, Pablo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3655961/
https://www.ncbi.nlm.nih.gov/pubmed/23696890
http://dx.doi.org/10.1371/journal.pone.0064406
Descripción
Sumario:Attentional networks that integrate many cortical and subcortical elements dynamically control mental processes to focus on specific events and make a decision. The resources of attentional processing are finite. Nevertheless, we often face situations in which it is necessary to simultaneously process several modalities, for example, to switch attention between players in a soccer field. Here we use a global brain mode description to build a model of attentional control dynamics. This model is based on sequential information processing stability conditions that are realized through nonsymmetric inhibition in cortical circuits. In particular, we analyze the dynamics of attentional switching and focus in the case of parallel processing of three interacting mental modalities. Using an excitatory-inhibitory network, we investigate how the bifurcations between different attentional control strategies depend on the stimuli and analyze the relationship between the time of attention focus and the strength of the stimuli. We discuss the interplay between attention and decision-making: in this context, a decision-making process is a controllable bifurcation of the attention strategy. We also suggest the dynamical evaluation of attentional resources in neural sequence processing.