Cargando…
Mitochondrial calcium uniporter, MiRNA and cancer: Live and let die
Mitochondria receive calcium (Ca(2+)) signals from endoplasmic reticulum (ER) and decode them into pro-apoptotic inputs, which lead to cell death. Therefore, mitochondrial Ca(2+) overload is considered a fundamental trigger of the apoptotic process, and several oncogenes and tumor suppressors modify...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Landes Bioscience
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656015/ https://www.ncbi.nlm.nih.gov/pubmed/23713134 http://dx.doi.org/10.4161/cib.23818 |
Sumario: | Mitochondria receive calcium (Ca(2+)) signals from endoplasmic reticulum (ER) and decode them into pro-apoptotic inputs, which lead to cell death. Therefore, mitochondrial Ca(2+) overload is considered a fundamental trigger of the apoptotic process, and several oncogenes and tumor suppressors modify the activity of protein involved in Ca(2+) homeostasis to control apoptosis. The identification of the channel responsible for mitochondrial Ca(2+) entry, the Mitochondrial Ca(2+)Uniporter (MCU), together with its regulatory components, MICU1 and MCUR1, provides new molecular tools to investigate this process. Recent data have also shown that miR-25 decreases mitochondrial Ca(2+) uptake through selective MCU downregulation, conferring resistance to apoptotic challenges. MCU appears to be downregulated in human colon cancer samples, and accordingly, miR-25 is aberrantly expressed, indicating the importance of mitochondrial Ca(2+) regulation in cancer cell survival. |
---|