Cargando…
SIMPLE: A new regulator of endosomal trafficking and signaling in health and disease
SIMPLE, also known as LITAF, EET1 and PIG7, was originally identified based on its transcriptional upregulation by estrogen, p53, lipopolysaccharide or a microbial cell-wall component. Missense mutations in SIMPLE cause Charcot-Marie-Tooth disease (CMT), and altered SIMPLE expression is associated w...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Landes Bioscience
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656027/ https://www.ncbi.nlm.nih.gov/pubmed/23713142 http://dx.doi.org/10.4161/cib.24214 |
Sumario: | SIMPLE, also known as LITAF, EET1 and PIG7, was originally identified based on its transcriptional upregulation by estrogen, p53, lipopolysaccharide or a microbial cell-wall component. Missense mutations in SIMPLE cause Charcot-Marie-Tooth disease (CMT), and altered SIMPLE expression is associated with cancer, obesity and inflammatory bowel diseases. Despite increasing evidence linking SIMPLE to human diseases, the biological function of SIMPLE is unknown and the pathogenic mechanism of SIMPLE mutations remains elusive. Our recent study reveals that SIMPLE is a functional partner of the endosomal sorting complex required for transport (ESCRT) machinery in the regulation of endosome-to-lysosome trafficking and intracellular signaling. Our results indicate that CMT-linked SIMPLE mutants are loss-of-function mutants which act dominantly to impair endosomal trafficking and signaling attenuation. We propose that endosomal trafficking and signaling dysregulation is a key pathogenic mechanism in CMT and other diseases that involve SIMPLE dysfunction. |
---|