Cargando…

Disorder-Specific Predictive Classification of Adolescents with Attention Deficit Hyperactivity Disorder (ADHD) Relative to Autism Using Structural Magnetic Resonance Imaging

OBJECTIVE: Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder, but diagnosed by subjective clinical and rating measures. The study’s aim was to apply Gaussian process classification (GPC) to grey matter (GM) volumetric data, to assess whether individual ADHD adolescents...

Descripción completa

Detalles Bibliográficos
Autores principales: Lim, Lena, Marquand, Andre, Cubillo, Ana A., Smith, Anna B., Chantiluke, Kaylita, Simmons, Andrew, Mehta, Mitul, Rubia, Katya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656087/
https://www.ncbi.nlm.nih.gov/pubmed/23696841
http://dx.doi.org/10.1371/journal.pone.0063660
Descripción
Sumario:OBJECTIVE: Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder, but diagnosed by subjective clinical and rating measures. The study’s aim was to apply Gaussian process classification (GPC) to grey matter (GM) volumetric data, to assess whether individual ADHD adolescents can be accurately differentiated from healthy controls based on objective, brain structure measures and whether this is disorder-specific relative to autism spectrum disorder (ASD). METHOD: Twenty-nine adolescent ADHD boys and 29 age-matched healthy and 19 boys with ASD were scanned. GPC was applied to make disorder-specific predictions of ADHD diagnostic status based on individual brain structure patterns. In addition, voxel-based morphometry (VBM) analysis tested for traditional univariate group level differences in GM. RESULTS: The pattern of GM correctly classified 75.9% of patients and 82.8% of controls, achieving an overall classification accuracy of 79.3%. Furthermore, classification was disorder-specific relative to ASD. The discriminating GM patterns showed higher classification weights for ADHD in earlier developing ventrolateral/premotor fronto-temporo-limbic and stronger classification weights for healthy controls in later developing dorsolateral fronto-striato-parieto-cerebellar networks. Several regions were also decreased in GM in ADHD relative to healthy controls in the univariate VBM analysis, suggesting they are GM deficit areas. CONCLUSIONS: The study provides evidence that pattern recognition analysis can provide significant individual diagnostic classification of ADHD patients and healthy controls based on distributed GM patterns with 79.3% accuracy and that this is disorder-specific relative to ASD. Findings are a promising first step towards finding an objective differential diagnostic tool based on brain imaging measures to aid with the subjective clinical diagnosis of ADHD.