Cargando…

A functional VipA-VipB interaction is required for the type VI secretion system activity of Vibrio cholerae O1 strain A1552

BACKGROUND: Many Gram-negative bacteria rely on a type VI secretion system (T6SS) to infect eukaryotic cells or to compete against other microbes. Common to these systems is the presence of two conserved proteins, in Vibrio cholerae denoted VipA and VipB, which have been shown to interact in many cl...

Descripción completa

Detalles Bibliográficos
Autores principales: Bröms, Jeanette E, Ishikawa, Takahiko, Wai, Sun N, Sjöstedt, Anders
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656785/
https://www.ncbi.nlm.nih.gov/pubmed/23642157
http://dx.doi.org/10.1186/1471-2180-13-96
Descripción
Sumario:BACKGROUND: Many Gram-negative bacteria rely on a type VI secretion system (T6SS) to infect eukaryotic cells or to compete against other microbes. Common to these systems is the presence of two conserved proteins, in Vibrio cholerae denoted VipA and VipB, which have been shown to interact in many clinically relevant pathogens. In this study, mutagenesis of a defined region within the VipA protein was used to identify residues important for VipB binding in V. cholerae O1 strain A1552. RESULTS: A dramatically diminished interaction was shown to correlate with a decrease in VipB stability and a loss of hemolysin co-regulated protein (Hcp) secretion and rendered the bacterium unable to compete with Escherichia coli in a competition assay. CONCLUSIONS: This confirms the biological relevance of the VipA-VipB interaction, which is essential for the T6SS activity of many important human pathogens.