Cargando…
Structure and regulation of the cellulose degradome in Clostridium cellulolyticum
BACKGROUND: Many bacteria efficiently degrade lignocellulose yet the underpinning genome-wide metabolic and regulatory networks remain elusive. Here we revealed the “cellulose degradome” for the model mesophilic cellulolytic bacterium Clostridium cellulolyticum ATCC 35319, via an integrated analysis...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656788/ https://www.ncbi.nlm.nih.gov/pubmed/23657055 http://dx.doi.org/10.1186/1754-6834-6-73 |
_version_ | 1782270050106867712 |
---|---|
author | Xu, Chenggang Huang, Ranran Teng, Lin Wang, Dongmei Hemme, Christopher L Borovok, Ilya He, Qiang Lamed, Raphael Bayer, Edward A Zhou, Jizhong Xu, Jian |
author_facet | Xu, Chenggang Huang, Ranran Teng, Lin Wang, Dongmei Hemme, Christopher L Borovok, Ilya He, Qiang Lamed, Raphael Bayer, Edward A Zhou, Jizhong Xu, Jian |
author_sort | Xu, Chenggang |
collection | PubMed |
description | BACKGROUND: Many bacteria efficiently degrade lignocellulose yet the underpinning genome-wide metabolic and regulatory networks remain elusive. Here we revealed the “cellulose degradome” for the model mesophilic cellulolytic bacterium Clostridium cellulolyticum ATCC 35319, via an integrated analysis of its complete genome, its transcriptomes under glucose, xylose, cellobiose, cellulose, xylan or corn stover and its extracellular proteomes under glucose, cellobiose or cellulose. RESULTS: Proteins for core metabolic functions, environment sensing, gene regulation and polysaccharide metabolism were enriched in the cellulose degradome. Analysis of differentially expressed genes revealed a “core” set of 48 CAZymes required for degrading cellulose-containing substrates as well as an “accessory” set of 76 CAZymes required for specific non-cellulose substrates. Gene co-expression analysis suggested that Carbon Catabolite Repression (CCR) related regulators sense intracellular glycolytic intermediates and control the core CAZymes that mainly include cellulosomal components, whereas 11 sets of Two-Component Systems (TCSs) respond to availability of extracellular soluble sugars and respectively regulate most of the accessory CAZymes and associated transporters. Surprisingly, under glucose alone, the core cellulases were highly expressed at both transcript and protein levels. Furthermore, glucose enhanced cellulolysis in a dose-dependent manner, via inducing cellulase transcription at low concentrations. CONCLUSION: A molecular model of cellulose degradome in C. cellulolyticum (Ccel) was proposed, which revealed the substrate-specificity of CAZymes and the transcriptional regulation of core cellulases by CCR where the glucose acts as a CCR inhibitor instead of a trigger. These features represent a distinct environment-sensing strategy for competing while collaborating for cellulose utilization, which can be exploited for process and genetic engineering of microbial cellulolysis. |
format | Online Article Text |
id | pubmed-3656788 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-36567882013-05-18 Structure and regulation of the cellulose degradome in Clostridium cellulolyticum Xu, Chenggang Huang, Ranran Teng, Lin Wang, Dongmei Hemme, Christopher L Borovok, Ilya He, Qiang Lamed, Raphael Bayer, Edward A Zhou, Jizhong Xu, Jian Biotechnol Biofuels Research BACKGROUND: Many bacteria efficiently degrade lignocellulose yet the underpinning genome-wide metabolic and regulatory networks remain elusive. Here we revealed the “cellulose degradome” for the model mesophilic cellulolytic bacterium Clostridium cellulolyticum ATCC 35319, via an integrated analysis of its complete genome, its transcriptomes under glucose, xylose, cellobiose, cellulose, xylan or corn stover and its extracellular proteomes under glucose, cellobiose or cellulose. RESULTS: Proteins for core metabolic functions, environment sensing, gene regulation and polysaccharide metabolism were enriched in the cellulose degradome. Analysis of differentially expressed genes revealed a “core” set of 48 CAZymes required for degrading cellulose-containing substrates as well as an “accessory” set of 76 CAZymes required for specific non-cellulose substrates. Gene co-expression analysis suggested that Carbon Catabolite Repression (CCR) related regulators sense intracellular glycolytic intermediates and control the core CAZymes that mainly include cellulosomal components, whereas 11 sets of Two-Component Systems (TCSs) respond to availability of extracellular soluble sugars and respectively regulate most of the accessory CAZymes and associated transporters. Surprisingly, under glucose alone, the core cellulases were highly expressed at both transcript and protein levels. Furthermore, glucose enhanced cellulolysis in a dose-dependent manner, via inducing cellulase transcription at low concentrations. CONCLUSION: A molecular model of cellulose degradome in C. cellulolyticum (Ccel) was proposed, which revealed the substrate-specificity of CAZymes and the transcriptional regulation of core cellulases by CCR where the glucose acts as a CCR inhibitor instead of a trigger. These features represent a distinct environment-sensing strategy for competing while collaborating for cellulose utilization, which can be exploited for process and genetic engineering of microbial cellulolysis. BioMed Central 2013-05-08 /pmc/articles/PMC3656788/ /pubmed/23657055 http://dx.doi.org/10.1186/1754-6834-6-73 Text en Copyright © 2013 Xu et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Xu, Chenggang Huang, Ranran Teng, Lin Wang, Dongmei Hemme, Christopher L Borovok, Ilya He, Qiang Lamed, Raphael Bayer, Edward A Zhou, Jizhong Xu, Jian Structure and regulation of the cellulose degradome in Clostridium cellulolyticum |
title | Structure and regulation of the cellulose degradome in Clostridium cellulolyticum |
title_full | Structure and regulation of the cellulose degradome in Clostridium cellulolyticum |
title_fullStr | Structure and regulation of the cellulose degradome in Clostridium cellulolyticum |
title_full_unstemmed | Structure and regulation of the cellulose degradome in Clostridium cellulolyticum |
title_short | Structure and regulation of the cellulose degradome in Clostridium cellulolyticum |
title_sort | structure and regulation of the cellulose degradome in clostridium cellulolyticum |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656788/ https://www.ncbi.nlm.nih.gov/pubmed/23657055 http://dx.doi.org/10.1186/1754-6834-6-73 |
work_keys_str_mv | AT xuchenggang structureandregulationofthecellulosedegradomeinclostridiumcellulolyticum AT huangranran structureandregulationofthecellulosedegradomeinclostridiumcellulolyticum AT tenglin structureandregulationofthecellulosedegradomeinclostridiumcellulolyticum AT wangdongmei structureandregulationofthecellulosedegradomeinclostridiumcellulolyticum AT hemmechristopherl structureandregulationofthecellulosedegradomeinclostridiumcellulolyticum AT borovokilya structureandregulationofthecellulosedegradomeinclostridiumcellulolyticum AT heqiang structureandregulationofthecellulosedegradomeinclostridiumcellulolyticum AT lamedraphael structureandregulationofthecellulosedegradomeinclostridiumcellulolyticum AT bayeredwarda structureandregulationofthecellulosedegradomeinclostridiumcellulolyticum AT zhoujizhong structureandregulationofthecellulosedegradomeinclostridiumcellulolyticum AT xujian structureandregulationofthecellulosedegradomeinclostridiumcellulolyticum |