Cargando…
AMBIENT: Active Modules for Bipartite Networks - using high-throughput transcriptomic data to dissect metabolic response
BACKGROUND: With the continued proliferation of high-throughput biological experiments, there is a pressing need for tools to integrate the data produced in ways that produce biologically meaningful conclusions. Many microarray studies have analysed transcriptomic data from a pathway perspective, fo...
Autores principales: | Bryant, William A, Sternberg, Michael JE, Pinney, John W |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656802/ https://www.ncbi.nlm.nih.gov/pubmed/23531303 http://dx.doi.org/10.1186/1752-0509-7-26 |
Ejemplares similares
-
Deciphering the response of Mycobacterium smegmatis to nitrogen stress using bipartite active modules
por: Williams, Kerstin J, et al.
Publicado: (2013) -
Drug-target interaction prediction using semi-bipartite graph model and deep learning
por: Eslami Manoochehri, Hafez, et al.
Publicado: (2020) -
MowJoe: a method for automated-high throughput dissected leaf phenotyping
por: Failmezger, Henrik, et al.
Publicado: (2018) -
Comparing time series transcriptome data between plants using a network module finding algorithm
por: Lee, Jiyoung, et al.
Publicado: (2019) -
METABOLIC: high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks
por: Zhou, Zhichao, et al.
Publicado: (2022)