Cargando…

Directed DNA Shuffling of Retrovirus and Retrotransposon Integrase Protein Domains

Chimeric proteins are used to study protein domain functions and to recombine protein domains for novel or optimal functions. We used a library of chimeric integrase proteins to study DNA integration specificity. The library was constructed using a directed shuffling method that we adapted from fusi...

Descripción completa

Detalles Bibliográficos
Autores principales: Qi, Xiaojie, Vargas, Edwin, Larsen, Liza, Knapp, Whitney, Hatfield, G. Wesley, Lathrop, Richard, Sandmeyer, Suzanne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656877/
https://www.ncbi.nlm.nih.gov/pubmed/23691126
http://dx.doi.org/10.1371/journal.pone.0063957
Descripción
Sumario:Chimeric proteins are used to study protein domain functions and to recombine protein domains for novel or optimal functions. We used a library of chimeric integrase proteins to study DNA integration specificity. The library was constructed using a directed shuffling method that we adapted from fusion PCR. This method easily and accurately shuffles multiple DNA gene sequences simultaneously at specific base-pair positions, such as protein domain boundaries. It produced all 27 properly-ordered combinations of the amino-terminal, catalytic core, and carboxyl-terminal domains of the integrase gene from human immunodeficiency virus, prototype foamy virus, and Saccharomyces cerevisiae retrotransposon Ty3. Retrotransposons can display dramatic position-specific integration specificity compared to retroviruses. The yeast retrotransposon Ty3 integrase interacts with RNA polymerase III transcription factors to target integration at the transcription initiation site. In vitro assays of the native and chimeric proteins showed that human immunodeficiency virus integrase was active with heterologous substrates, whereas prototype foamy virus and Ty3 integrases were not. This observation was consistent with a lower substrate specificity for human immunodeficiency virus integrase than for other retrovirus integrases. All eight chimeras containing the Ty3 integrase carboxyl-terminal domain, a candidate targeting domain, failed to target strand transfer in the presence of the targeting protein, suggesting that multiple domains of the Ty3 integrase cooperate in this function.