Cargando…
Semi-Supervised Prediction of SH2-Peptide Interactions from Imbalanced High-Throughput Data
Src homology 2 (SH2) domains are the largest family of the peptide-recognition modules (PRMs) that bind to phosphotyrosine containing peptides. Knowledge about binding partners of SH2-domains is key for a deeper understanding of different cellular processes. Given the high binding specificity of SH2...
Autores principales: | Kundu, Kousik, Costa, Fabrizio, Huber, Michael, Reth, Michael, Backofen, Rolf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656881/ https://www.ncbi.nlm.nih.gov/pubmed/23690949 http://dx.doi.org/10.1371/journal.pone.0062732 |
Ejemplares similares
-
A graph kernel approach for alignment-free domain–peptide interaction prediction with an application to human SH3 domains
por: Kundu, Kousik, et al.
Publicado: (2013) -
MoDPepInt: an interactive web server for prediction of modular domain–peptide interactions
por: Kundu, Kousik, et al.
Publicado: (2014) -
Cluster based prediction of PDZ-peptide interactions
por: Kundu, Kousik, et al.
Publicado: (2014) -
An Impartial Semi-Supervised Learning Strategy for Imbalanced Classification on VHR Images
por: Sun, Fei, et al.
Publicado: (2020) -
A Semi-Supervised Approach to Bearing Fault Diagnosis under Variable Conditions towards Imbalanced Unlabeled Data
por: Chen, Xinan, et al.
Publicado: (2018)