Cargando…

The role of hemifield sector analysis in multifocal visual evoked potential objective perimetry in the early detection of glaucomatous visual field defects

OBJECTIVE: The purpose of this study was to examine the effectiveness of a new analysis method of mfVEP objective perimetry in the early detection of glaucomatous visual field defects compared to the gold standard technique. METHODS AND PATIENTS: Three groups were tested in this study; normal contro...

Descripción completa

Detalles Bibliográficos
Autores principales: Mousa, Mohammad F, Cubbidge, Robert P, Al-Mansouri, Fatima, Bener, Abdulbari
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656925/
https://www.ncbi.nlm.nih.gov/pubmed/23690675
http://dx.doi.org/10.2147/OPTH.S44009
_version_ 1782270079131451392
author Mousa, Mohammad F
Cubbidge, Robert P
Al-Mansouri, Fatima
Bener, Abdulbari
author_facet Mousa, Mohammad F
Cubbidge, Robert P
Al-Mansouri, Fatima
Bener, Abdulbari
author_sort Mousa, Mohammad F
collection PubMed
description OBJECTIVE: The purpose of this study was to examine the effectiveness of a new analysis method of mfVEP objective perimetry in the early detection of glaucomatous visual field defects compared to the gold standard technique. METHODS AND PATIENTS: Three groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes), and glaucoma suspect patients (38 eyes). All subjects underwent two standard 24-2 visual field tests: one with the Humphrey Field Analyzer and a single mfVEP test in one session. Analysis of the mfVEP results was carried out using the new analysis protocol: the hemifield sector analysis protocol. RESULTS: Analysis of the mfVEP showed that the signal to noise ratio (SNR) difference between superior and inferior hemifields was statistically significant between the three groups (analysis of variance, P < 0.001 with a 95% confidence interval, 2.82, 2.89 for normal group; 2.25, 2.29 for glaucoma suspect group; 1.67, 1.73 for glaucoma group). The difference between superior and inferior hemifield sectors and hemi-rings was statistically significant in 11/11 pair of sectors and hemi-rings in the glaucoma patients group (t-test P < 0.001), statistically significant in 5/11 pairs of sectors and hemi-rings in the glaucoma suspect group (t-test P < 0.01), and only 1/11 pair was statistically significant (t-test P < 0.9). The sensitivity and specificity of the hemifield sector analysis protocol in detecting glaucoma was 97% and 86% respectively and 89% and 79% in glaucoma suspects. These results showed that the new analysis protocol was able to confirm existing visual field defects detected by standard perimetry, was able to differentiate between the three study groups with a clear distinction between normal patients and those with suspected glaucoma, and was able to detect early visual field changes not detected by standard perimetry. In addition, the distinction between normal and glaucoma patients was especially clear and significant using this analysis. CONCLUSION: The new hemifield sector analysis protocol used in mfVEP testing can be used to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patients. Using this protocol, it can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. The sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucomatous visual field loss. The intersector analysis protocol can detect early field changes not detected by the standard Humphrey Field Analyzer test.
format Online
Article
Text
id pubmed-3656925
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Dove Medical Press
record_format MEDLINE/PubMed
spelling pubmed-36569252013-05-20 The role of hemifield sector analysis in multifocal visual evoked potential objective perimetry in the early detection of glaucomatous visual field defects Mousa, Mohammad F Cubbidge, Robert P Al-Mansouri, Fatima Bener, Abdulbari Clin Ophthalmol Original Research OBJECTIVE: The purpose of this study was to examine the effectiveness of a new analysis method of mfVEP objective perimetry in the early detection of glaucomatous visual field defects compared to the gold standard technique. METHODS AND PATIENTS: Three groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes), and glaucoma suspect patients (38 eyes). All subjects underwent two standard 24-2 visual field tests: one with the Humphrey Field Analyzer and a single mfVEP test in one session. Analysis of the mfVEP results was carried out using the new analysis protocol: the hemifield sector analysis protocol. RESULTS: Analysis of the mfVEP showed that the signal to noise ratio (SNR) difference between superior and inferior hemifields was statistically significant between the three groups (analysis of variance, P < 0.001 with a 95% confidence interval, 2.82, 2.89 for normal group; 2.25, 2.29 for glaucoma suspect group; 1.67, 1.73 for glaucoma group). The difference between superior and inferior hemifield sectors and hemi-rings was statistically significant in 11/11 pair of sectors and hemi-rings in the glaucoma patients group (t-test P < 0.001), statistically significant in 5/11 pairs of sectors and hemi-rings in the glaucoma suspect group (t-test P < 0.01), and only 1/11 pair was statistically significant (t-test P < 0.9). The sensitivity and specificity of the hemifield sector analysis protocol in detecting glaucoma was 97% and 86% respectively and 89% and 79% in glaucoma suspects. These results showed that the new analysis protocol was able to confirm existing visual field defects detected by standard perimetry, was able to differentiate between the three study groups with a clear distinction between normal patients and those with suspected glaucoma, and was able to detect early visual field changes not detected by standard perimetry. In addition, the distinction between normal and glaucoma patients was especially clear and significant using this analysis. CONCLUSION: The new hemifield sector analysis protocol used in mfVEP testing can be used to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patients. Using this protocol, it can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. The sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucomatous visual field loss. The intersector analysis protocol can detect early field changes not detected by the standard Humphrey Field Analyzer test. Dove Medical Press 2013 2013-05-08 /pmc/articles/PMC3656925/ /pubmed/23690675 http://dx.doi.org/10.2147/OPTH.S44009 Text en © 2013 Mousa et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.
spellingShingle Original Research
Mousa, Mohammad F
Cubbidge, Robert P
Al-Mansouri, Fatima
Bener, Abdulbari
The role of hemifield sector analysis in multifocal visual evoked potential objective perimetry in the early detection of glaucomatous visual field defects
title The role of hemifield sector analysis in multifocal visual evoked potential objective perimetry in the early detection of glaucomatous visual field defects
title_full The role of hemifield sector analysis in multifocal visual evoked potential objective perimetry in the early detection of glaucomatous visual field defects
title_fullStr The role of hemifield sector analysis in multifocal visual evoked potential objective perimetry in the early detection of glaucomatous visual field defects
title_full_unstemmed The role of hemifield sector analysis in multifocal visual evoked potential objective perimetry in the early detection of glaucomatous visual field defects
title_short The role of hemifield sector analysis in multifocal visual evoked potential objective perimetry in the early detection of glaucomatous visual field defects
title_sort role of hemifield sector analysis in multifocal visual evoked potential objective perimetry in the early detection of glaucomatous visual field defects
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656925/
https://www.ncbi.nlm.nih.gov/pubmed/23690675
http://dx.doi.org/10.2147/OPTH.S44009
work_keys_str_mv AT mousamohammadf theroleofhemifieldsectoranalysisinmultifocalvisualevokedpotentialobjectiveperimetryintheearlydetectionofglaucomatousvisualfielddefects
AT cubbidgerobertp theroleofhemifieldsectoranalysisinmultifocalvisualevokedpotentialobjectiveperimetryintheearlydetectionofglaucomatousvisualfielddefects
AT almansourifatima theroleofhemifieldsectoranalysisinmultifocalvisualevokedpotentialobjectiveperimetryintheearlydetectionofglaucomatousvisualfielddefects
AT benerabdulbari theroleofhemifieldsectoranalysisinmultifocalvisualevokedpotentialobjectiveperimetryintheearlydetectionofglaucomatousvisualfielddefects
AT mousamohammadf roleofhemifieldsectoranalysisinmultifocalvisualevokedpotentialobjectiveperimetryintheearlydetectionofglaucomatousvisualfielddefects
AT cubbidgerobertp roleofhemifieldsectoranalysisinmultifocalvisualevokedpotentialobjectiveperimetryintheearlydetectionofglaucomatousvisualfielddefects
AT almansourifatima roleofhemifieldsectoranalysisinmultifocalvisualevokedpotentialobjectiveperimetryintheearlydetectionofglaucomatousvisualfielddefects
AT benerabdulbari roleofhemifieldsectoranalysisinmultifocalvisualevokedpotentialobjectiveperimetryintheearlydetectionofglaucomatousvisualfielddefects