Cargando…
CDC48 function during TMV infection: Regulation of virus movement and replication by degradation?
Cell-division-cycle protein 48 (CDC48) is an essential, conserved ATP-driven chaperone in eukaryotic cells, which functions in diverse cellular processes including the targeting of misfolded and aggregated proteins for degradation via proteasomal and aggresomal-autophagic pathways. We recently demon...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Landes Bioscience
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656987/ https://www.ncbi.nlm.nih.gov/pubmed/23154510 http://dx.doi.org/10.4161/psb.22865 |
Sumario: | Cell-division-cycle protein 48 (CDC48) is an essential, conserved ATP-driven chaperone in eukaryotic cells, which functions in diverse cellular processes including the targeting of misfolded and aggregated proteins for degradation via proteasomal and aggresomal-autophagic pathways. We recently demonstrated that plant CDC48 localizes to and interacts with Tobacco mosaic virus (TMV) movement protein (MP) in ER-associated viral protein inclusions. Our data suggest that CDC48 participates in the clearance of these viral protein inclusions in an ER-assisted protein degradation (ERAD)-like mechanism. As TMV MP-inclusions formed at late infection stages resemble aggresomes, we here propose that TMV MP enters both, ERAD-like and aggresomal pathways in its host cells and that CDC48 coordinates these processes. Moreover, as viruses often exploit host pathways for replication and spread, we propose a model in which CDC48 functions in the degradation pathway of overaccumulating viral protein and also actively participates in the regulation of TMV replication and cell-to-cell movement. |
---|