Cargando…

A Fluid Mechanical Interpretation of Hysteresis in Rhinomanometry

A hysteresis effect in the pressure/flow rate relationship of nasal breathing has frequently been observed in clinical tests and in lab investigations. Explanations that have been given in the literature are missing a fluid mechanic storage effect coming into play in reciprocating flows. This effect...

Descripción completa

Detalles Bibliográficos
Autores principales: Groß, T. F., Peters, F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scholarly Research Network 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658487/
https://www.ncbi.nlm.nih.gov/pubmed/23724249
http://dx.doi.org/10.5402/2011/126520
Descripción
Sumario:A hysteresis effect in the pressure/flow rate relationship of nasal breathing has frequently been observed in clinical tests and in lab investigations. Explanations that have been given in the literature are missing a fluid mechanic storage effect coming into play in reciprocating flows. This effect depends primarily on the way the rhinomanometric measurements are set up and not so much on the nose flow itself. This is to be shown by calculations and experiments. The experiments are carried out with orifices because they can represent nose flow and are often implemented in rhinomanometric equipment as flow gauges. To mimic reality also a 1 : 1 nose model is used. It is shown where the hysteresis comes from and what the key parameters for its prediction are. With these results hysteresis in nasal breathing appears in a new light.