Cargando…

Glucan Biosynthesis Protein G Is a Suitable Reference Gene in Escherichia coli K-12

The expressions of reference genes used in gene expression studies are assumed to be stable under most circumstances. However, a number of studies had demonstrated that such genes were found to vary under experimental conditions. In addition, genes that are stably expressed in an organ may not be st...

Descripción completa

Detalles Bibliográficos
Autores principales: Heng, Sean S. J., Chan, Oliver Y. W., Keng, Bryan M. H., Ling, Maurice H. T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scholarly Research Network 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658596/
https://www.ncbi.nlm.nih.gov/pubmed/23724305
http://dx.doi.org/10.5402/2011/469053
Descripción
Sumario:The expressions of reference genes used in gene expression studies are assumed to be stable under most circumstances. However, a number of studies had demonstrated that such genes were found to vary under experimental conditions. In addition, genes that are stably expressed in an organ may not be stably expressed in other organs or other organisms, suggesting the need to identify reference genes for each organ and organism. This study aims at identifying stably expressed genes in Escherichia coli. Microarray datasets from E. coli substrain MG1655 and 1 dataset from W3110 were analysed. Coefficient of variance (COV) of was calculated and 10% of the lowest COV from 4631 genes common in the 3 MG1655 sets were analysed using NormFinder. Glucan biosynthesis protein G (mdoG), which is involved in cell wall synthesis, displayed the lowest weighted COV and weighted NormFinder Stability Index for the MG1655 datasets, while also showing to be the most stable in the dataset for substrain W3110, suggesting that mdoG is a suitable reference gene for E. coli K-12. Gene ontology over-representation analysis on the 39 genes suggested an over-representation of cell division, carbohydrate metabolism, and protein synthesis which supports the short generation time of E. coli.