Cargando…
Dynamic Obstacle Avoidance Using Bayesian Occupancy Filter and Approximate Inference
The goal of this paper is to solve the problem of dynamic obstacle avoidance for a mobile platform by using the stochastic optimal control framework to compute paths that are optimal in terms of safety and energy efficiency under constraints. We propose a three-dimensional extension of the Bayesian...
Autores principales: | Llamazares, Ángel, Ivan, Vladimir, Molinos, Eduardo, Ocaña, Manuel, Vijayakumar, Sethu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658723/ https://www.ncbi.nlm.nih.gov/pubmed/23529117 http://dx.doi.org/10.3390/s130302929 |
Ejemplares similares
-
Improved Dynamic Obstacle Mapping (iDOMap)
por: Llamazares, Ángel, et al.
Publicado: (2020) -
Multisensory Oddity Detection as Bayesian Inference
por: Hospedales, Timothy, et al.
Publicado: (2009) -
Approximate Bayesian Inference
por: Alquier, Pierre
Publicado: (2020) -
Approximate Bayesian inference for complex ecosystems
por: Stumpf, Michael P.H.
Publicado: (2014) -
Particle Filtering for Obstacle Tracking in UAS Sense and Avoid Applications
por: Tirri, Anna Elena, et al.
Publicado: (2014)