Cargando…
Multipass Active Contours for an Adaptive Contour Map
Isocontour mapping is efficient for extracting meaningful information from a biomedical image in a topographic analysis. Isocontour extraction from real world medical images is difficult due to noise and other factors. As such, adaptive selection of contour generation parameters is needed. This pape...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658771/ https://www.ncbi.nlm.nih.gov/pubmed/23503297 http://dx.doi.org/10.3390/s130303724 |
_version_ | 1782270331066515456 |
---|---|
author | Kim, Jeong Heon Park, Bo-Young Akram, Farhan Hong, Byung-Woo Choi, Kwang Nam |
author_facet | Kim, Jeong Heon Park, Bo-Young Akram, Farhan Hong, Byung-Woo Choi, Kwang Nam |
author_sort | Kim, Jeong Heon |
collection | PubMed |
description | Isocontour mapping is efficient for extracting meaningful information from a biomedical image in a topographic analysis. Isocontour extraction from real world medical images is difficult due to noise and other factors. As such, adaptive selection of contour generation parameters is needed. This paper proposes an algorithm for generating an adaptive contour map that is spatially adjusted. It is based on the modified active contour model, which imposes successive spatial constraints on the image domain. The adaptability of the proposed algorithm is governed by the energy term of the model. This work focuses on mammograms and the analysis of their intensity. Our algorithm employs the Mumford-Shah energy functional, which considers an image's intensity distribution. In mammograms, the brighter regions generally contain significant information. Our approach exploits this characteristic to address the initialization and local optimum problems of the active contour model. Our algorithm starts from the darkest region; therefore, local optima encountered during the evolution of contours are populated in less important regions, and the important brighter regions are reserved for later stages. For an unrestricted initial contour, our algorithm adopts an existing technique without re-initialization. To assess its effectiveness and robustness, the proposed algorithm was tested on a set of mammograms. |
format | Online Article Text |
id | pubmed-3658771 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-36587712013-05-30 Multipass Active Contours for an Adaptive Contour Map Kim, Jeong Heon Park, Bo-Young Akram, Farhan Hong, Byung-Woo Choi, Kwang Nam Sensors (Basel) Article Isocontour mapping is efficient for extracting meaningful information from a biomedical image in a topographic analysis. Isocontour extraction from real world medical images is difficult due to noise and other factors. As such, adaptive selection of contour generation parameters is needed. This paper proposes an algorithm for generating an adaptive contour map that is spatially adjusted. It is based on the modified active contour model, which imposes successive spatial constraints on the image domain. The adaptability of the proposed algorithm is governed by the energy term of the model. This work focuses on mammograms and the analysis of their intensity. Our algorithm employs the Mumford-Shah energy functional, which considers an image's intensity distribution. In mammograms, the brighter regions generally contain significant information. Our approach exploits this characteristic to address the initialization and local optimum problems of the active contour model. Our algorithm starts from the darkest region; therefore, local optima encountered during the evolution of contours are populated in less important regions, and the important brighter regions are reserved for later stages. For an unrestricted initial contour, our algorithm adopts an existing technique without re-initialization. To assess its effectiveness and robustness, the proposed algorithm was tested on a set of mammograms. Molecular Diversity Preservation International (MDPI) 2013-03-15 /pmc/articles/PMC3658771/ /pubmed/23503297 http://dx.doi.org/10.3390/s130303724 Text en © 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Kim, Jeong Heon Park, Bo-Young Akram, Farhan Hong, Byung-Woo Choi, Kwang Nam Multipass Active Contours for an Adaptive Contour Map |
title | Multipass Active Contours for an Adaptive Contour Map |
title_full | Multipass Active Contours for an Adaptive Contour Map |
title_fullStr | Multipass Active Contours for an Adaptive Contour Map |
title_full_unstemmed | Multipass Active Contours for an Adaptive Contour Map |
title_short | Multipass Active Contours for an Adaptive Contour Map |
title_sort | multipass active contours for an adaptive contour map |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658771/ https://www.ncbi.nlm.nih.gov/pubmed/23503297 http://dx.doi.org/10.3390/s130303724 |
work_keys_str_mv | AT kimjeongheon multipassactivecontoursforanadaptivecontourmap AT parkboyoung multipassactivecontoursforanadaptivecontourmap AT akramfarhan multipassactivecontoursforanadaptivecontourmap AT hongbyungwoo multipassactivecontoursforanadaptivecontourmap AT choikwangnam multipassactivecontoursforanadaptivecontourmap |