Cargando…
Rank Awareness in Group-Sparse Recovery of Multi-Echo MR Images
This work addresses the problem of recovering multi-echo T1 or T2 weighted images from their partial K-space scans. Recent studies have shown that the best results are obtained when all the multi-echo images are reconstructed by simultaneously exploiting their intra-image spatial redundancy and inte...
Autores principales: | Majumdar, Angshul, Ward, Rabab |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658782/ https://www.ncbi.nlm.nih.gov/pubmed/23519348 http://dx.doi.org/10.3390/s130303902 |
Ejemplares similares
-
A Low-Rank Matrix Recovery Approach for Energy Efficient EEG Acquisition for a Wireless Body Area Network
por: Majumdar, Angshul, et al.
Publicado: (2014) -
Calibrationless Parallel Magnetic Resonance Imaging: A Joint Sparsity Model
por: Majumdar, Angshul, et al.
Publicado: (2013) -
Low-Rank and Sparse Recovery of Human Gait Data
por: Kamali, Kaveh, et al.
Publicado: (2020) -
Low-Rank and Sparse Matrix Recovery for Hyperspectral Image Reconstruction Using Bayesian Learning
por: Zhang, Yanbin, et al.
Publicado: (2022) -
Low-Rank Based Image Analyses for Pathological MR Image Segmentation and Recovery
por: Lin, Chuanlu, et al.
Publicado: (2019)