Cargando…
Prediction models for clustered data: comparison of a random intercept and standard regression model
BACKGROUND: When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably p...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658967/ https://www.ncbi.nlm.nih.gov/pubmed/23414436 http://dx.doi.org/10.1186/1471-2288-13-19 |
_version_ | 1782270372978098176 |
---|---|
author | Bouwmeester, Walter Twisk, Jos WR Kappen, Teus H van Klei, Wilton A Moons, Karel GM Vergouwe, Yvonne |
author_facet | Bouwmeester, Walter Twisk, Jos WR Kappen, Teus H van Klei, Wilton A Moons, Karel GM Vergouwe, Yvonne |
author_sort | Bouwmeester, Walter |
collection | PubMed |
description | BACKGROUND: When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. METHODS: Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. RESULTS: The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. CONCLUSION: The models with random intercept discriminate better than the standard model only if the cluster effect is used for predictions. The prediction model with random intercept had good calibration within clusters. |
format | Online Article Text |
id | pubmed-3658967 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-36589672013-05-23 Prediction models for clustered data: comparison of a random intercept and standard regression model Bouwmeester, Walter Twisk, Jos WR Kappen, Teus H van Klei, Wilton A Moons, Karel GM Vergouwe, Yvonne BMC Med Res Methodol Research Article BACKGROUND: When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. METHODS: Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. RESULTS: The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. CONCLUSION: The models with random intercept discriminate better than the standard model only if the cluster effect is used for predictions. The prediction model with random intercept had good calibration within clusters. BioMed Central 2013-02-15 /pmc/articles/PMC3658967/ /pubmed/23414436 http://dx.doi.org/10.1186/1471-2288-13-19 Text en Copyright © 2013 Bouwmeester et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Bouwmeester, Walter Twisk, Jos WR Kappen, Teus H van Klei, Wilton A Moons, Karel GM Vergouwe, Yvonne Prediction models for clustered data: comparison of a random intercept and standard regression model |
title | Prediction models for clustered data: comparison of a random intercept and standard regression model |
title_full | Prediction models for clustered data: comparison of a random intercept and standard regression model |
title_fullStr | Prediction models for clustered data: comparison of a random intercept and standard regression model |
title_full_unstemmed | Prediction models for clustered data: comparison of a random intercept and standard regression model |
title_short | Prediction models for clustered data: comparison of a random intercept and standard regression model |
title_sort | prediction models for clustered data: comparison of a random intercept and standard regression model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658967/ https://www.ncbi.nlm.nih.gov/pubmed/23414436 http://dx.doi.org/10.1186/1471-2288-13-19 |
work_keys_str_mv | AT bouwmeesterwalter predictionmodelsforclustereddatacomparisonofarandominterceptandstandardregressionmodel AT twiskjoswr predictionmodelsforclustereddatacomparisonofarandominterceptandstandardregressionmodel AT kappenteush predictionmodelsforclustereddatacomparisonofarandominterceptandstandardregressionmodel AT vankleiwiltona predictionmodelsforclustereddatacomparisonofarandominterceptandstandardregressionmodel AT moonskarelgm predictionmodelsforclustereddatacomparisonofarandominterceptandstandardregressionmodel AT vergouweyvonne predictionmodelsforclustereddatacomparisonofarandominterceptandstandardregressionmodel |