Cargando…
Non-negative matrix factorization by maximizing correntropy for cancer clustering
BACKGROUND: Non-negative matrix factorization (NMF) has been shown to be a powerful tool for clustering gene expression data, which are widely used to classify cancers. NMF aims to find two non-negative matrices whose product closely approximates the original matrix. Traditional NMF methods minimize...
Autores principales: | Wang, Jim Jing-Yan, Wang, Xiaolei, Gao, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659102/ https://www.ncbi.nlm.nih.gov/pubmed/23522344 http://dx.doi.org/10.1186/1471-2105-14-107 |
Ejemplares similares
-
Correntropy Based Matrix Completion
por: Yang, Yuning, et al.
Publicado: (2018) -
Robust large-scale clustering based on correntropy
por: Jin, Guodong, et al.
Publicado: (2022) -
Correntropy induced loss based sparse robust graph regularized extreme learning machine for cancer classification
por: Ren, Liang-Rui, et al.
Publicado: (2020) -
The non-negative matrix factorization toolbox for biological data mining
por: Li, Yifeng, et al.
Publicado: (2013) -
Optimization and expansion of non-negative matrix factorization
por: Lin, Xihui, et al.
Publicado: (2020)