Cargando…
Engineering PQS Biosynthesis Pathway for Enhancement of Bioelectricity Production in Pseudomonas aeruginosa Microbial Fuel Cells
The biosynthesis of the redox shuttle, phenazines, in Pseudomonas aeruginosa, an ubiquitous microorganism in wastewater microflora, is regulated by the 2-heptyl-3,4-dihydroxyquinoline (PQS) quorum-sensing system. However, PQS inhibits anaerobic growth of P. aeruginosa. We constructed a P. aeruginosa...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659106/ https://www.ncbi.nlm.nih.gov/pubmed/23700414 http://dx.doi.org/10.1371/journal.pone.0063129 |
_version_ | 1782270403432939520 |
---|---|
author | Wang, Victor Bochuan Chua, Song-Lin Cao, Bin Seviour, Thomas Nesatyy, Victor J. Marsili, Enrico Kjelleberg, Staffan Givskov, Michael Tolker-Nielsen, Tim Song, Hao Loo, Joachim Say Chye Yang, Liang |
author_facet | Wang, Victor Bochuan Chua, Song-Lin Cao, Bin Seviour, Thomas Nesatyy, Victor J. Marsili, Enrico Kjelleberg, Staffan Givskov, Michael Tolker-Nielsen, Tim Song, Hao Loo, Joachim Say Chye Yang, Liang |
author_sort | Wang, Victor Bochuan |
collection | PubMed |
description | The biosynthesis of the redox shuttle, phenazines, in Pseudomonas aeruginosa, an ubiquitous microorganism in wastewater microflora, is regulated by the 2-heptyl-3,4-dihydroxyquinoline (PQS) quorum-sensing system. However, PQS inhibits anaerobic growth of P. aeruginosa. We constructed a P. aeruginosa strain that produces higher concentrations of phenazines under anaerobic conditions by over-expressing the PqsE effector in a PQS negative ΔpqsC mutant. The engineered strain exhibited an improved electrical performance in microbial fuel cells (MFCs) and potentiostat-controlled electrochemical cells with an approximate five-fold increase of maximum current density relative to the parent strain. Electrochemical analysis showed that the current increase correlates with an over-synthesis of phenazines. These results therefore demonstrate that targeting microbial cell-to-cell communication by genetic engineering is a suitable technique to improve power output of bioelectrochemical systems. |
format | Online Article Text |
id | pubmed-3659106 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36591062013-05-22 Engineering PQS Biosynthesis Pathway for Enhancement of Bioelectricity Production in Pseudomonas aeruginosa Microbial Fuel Cells Wang, Victor Bochuan Chua, Song-Lin Cao, Bin Seviour, Thomas Nesatyy, Victor J. Marsili, Enrico Kjelleberg, Staffan Givskov, Michael Tolker-Nielsen, Tim Song, Hao Loo, Joachim Say Chye Yang, Liang PLoS One Research Article The biosynthesis of the redox shuttle, phenazines, in Pseudomonas aeruginosa, an ubiquitous microorganism in wastewater microflora, is regulated by the 2-heptyl-3,4-dihydroxyquinoline (PQS) quorum-sensing system. However, PQS inhibits anaerobic growth of P. aeruginosa. We constructed a P. aeruginosa strain that produces higher concentrations of phenazines under anaerobic conditions by over-expressing the PqsE effector in a PQS negative ΔpqsC mutant. The engineered strain exhibited an improved electrical performance in microbial fuel cells (MFCs) and potentiostat-controlled electrochemical cells with an approximate five-fold increase of maximum current density relative to the parent strain. Electrochemical analysis showed that the current increase correlates with an over-synthesis of phenazines. These results therefore demonstrate that targeting microbial cell-to-cell communication by genetic engineering is a suitable technique to improve power output of bioelectrochemical systems. Public Library of Science 2013-05-20 /pmc/articles/PMC3659106/ /pubmed/23700414 http://dx.doi.org/10.1371/journal.pone.0063129 Text en © 2013 Wang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Wang, Victor Bochuan Chua, Song-Lin Cao, Bin Seviour, Thomas Nesatyy, Victor J. Marsili, Enrico Kjelleberg, Staffan Givskov, Michael Tolker-Nielsen, Tim Song, Hao Loo, Joachim Say Chye Yang, Liang Engineering PQS Biosynthesis Pathway for Enhancement of Bioelectricity Production in Pseudomonas aeruginosa Microbial Fuel Cells |
title | Engineering PQS Biosynthesis Pathway for Enhancement of Bioelectricity Production in Pseudomonas aeruginosa Microbial Fuel Cells |
title_full | Engineering PQS Biosynthesis Pathway for Enhancement of Bioelectricity Production in Pseudomonas aeruginosa Microbial Fuel Cells |
title_fullStr | Engineering PQS Biosynthesis Pathway for Enhancement of Bioelectricity Production in Pseudomonas aeruginosa Microbial Fuel Cells |
title_full_unstemmed | Engineering PQS Biosynthesis Pathway for Enhancement of Bioelectricity Production in Pseudomonas aeruginosa Microbial Fuel Cells |
title_short | Engineering PQS Biosynthesis Pathway for Enhancement of Bioelectricity Production in Pseudomonas aeruginosa Microbial Fuel Cells |
title_sort | engineering pqs biosynthesis pathway for enhancement of bioelectricity production in pseudomonas aeruginosa microbial fuel cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659106/ https://www.ncbi.nlm.nih.gov/pubmed/23700414 http://dx.doi.org/10.1371/journal.pone.0063129 |
work_keys_str_mv | AT wangvictorbochuan engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells AT chuasonglin engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells AT caobin engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells AT seviourthomas engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells AT nesatyyvictorj engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells AT marsilienrico engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells AT kjellebergstaffan engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells AT givskovmichael engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells AT tolkernielsentim engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells AT songhao engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells AT loojoachimsaychye engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells AT yangliang engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells |