Cargando…

Engineering PQS Biosynthesis Pathway for Enhancement of Bioelectricity Production in Pseudomonas aeruginosa Microbial Fuel Cells

The biosynthesis of the redox shuttle, phenazines, in Pseudomonas aeruginosa, an ubiquitous microorganism in wastewater microflora, is regulated by the 2-heptyl-3,4-dihydroxyquinoline (PQS) quorum-sensing system. However, PQS inhibits anaerobic growth of P. aeruginosa. We constructed a P. aeruginosa...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Victor Bochuan, Chua, Song-Lin, Cao, Bin, Seviour, Thomas, Nesatyy, Victor J., Marsili, Enrico, Kjelleberg, Staffan, Givskov, Michael, Tolker-Nielsen, Tim, Song, Hao, Loo, Joachim Say Chye, Yang, Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659106/
https://www.ncbi.nlm.nih.gov/pubmed/23700414
http://dx.doi.org/10.1371/journal.pone.0063129
_version_ 1782270403432939520
author Wang, Victor Bochuan
Chua, Song-Lin
Cao, Bin
Seviour, Thomas
Nesatyy, Victor J.
Marsili, Enrico
Kjelleberg, Staffan
Givskov, Michael
Tolker-Nielsen, Tim
Song, Hao
Loo, Joachim Say Chye
Yang, Liang
author_facet Wang, Victor Bochuan
Chua, Song-Lin
Cao, Bin
Seviour, Thomas
Nesatyy, Victor J.
Marsili, Enrico
Kjelleberg, Staffan
Givskov, Michael
Tolker-Nielsen, Tim
Song, Hao
Loo, Joachim Say Chye
Yang, Liang
author_sort Wang, Victor Bochuan
collection PubMed
description The biosynthesis of the redox shuttle, phenazines, in Pseudomonas aeruginosa, an ubiquitous microorganism in wastewater microflora, is regulated by the 2-heptyl-3,4-dihydroxyquinoline (PQS) quorum-sensing system. However, PQS inhibits anaerobic growth of P. aeruginosa. We constructed a P. aeruginosa strain that produces higher concentrations of phenazines under anaerobic conditions by over-expressing the PqsE effector in a PQS negative ΔpqsC mutant. The engineered strain exhibited an improved electrical performance in microbial fuel cells (MFCs) and potentiostat-controlled electrochemical cells with an approximate five-fold increase of maximum current density relative to the parent strain. Electrochemical analysis showed that the current increase correlates with an over-synthesis of phenazines. These results therefore demonstrate that targeting microbial cell-to-cell communication by genetic engineering is a suitable technique to improve power output of bioelectrochemical systems.
format Online
Article
Text
id pubmed-3659106
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-36591062013-05-22 Engineering PQS Biosynthesis Pathway for Enhancement of Bioelectricity Production in Pseudomonas aeruginosa Microbial Fuel Cells Wang, Victor Bochuan Chua, Song-Lin Cao, Bin Seviour, Thomas Nesatyy, Victor J. Marsili, Enrico Kjelleberg, Staffan Givskov, Michael Tolker-Nielsen, Tim Song, Hao Loo, Joachim Say Chye Yang, Liang PLoS One Research Article The biosynthesis of the redox shuttle, phenazines, in Pseudomonas aeruginosa, an ubiquitous microorganism in wastewater microflora, is regulated by the 2-heptyl-3,4-dihydroxyquinoline (PQS) quorum-sensing system. However, PQS inhibits anaerobic growth of P. aeruginosa. We constructed a P. aeruginosa strain that produces higher concentrations of phenazines under anaerobic conditions by over-expressing the PqsE effector in a PQS negative ΔpqsC mutant. The engineered strain exhibited an improved electrical performance in microbial fuel cells (MFCs) and potentiostat-controlled electrochemical cells with an approximate five-fold increase of maximum current density relative to the parent strain. Electrochemical analysis showed that the current increase correlates with an over-synthesis of phenazines. These results therefore demonstrate that targeting microbial cell-to-cell communication by genetic engineering is a suitable technique to improve power output of bioelectrochemical systems. Public Library of Science 2013-05-20 /pmc/articles/PMC3659106/ /pubmed/23700414 http://dx.doi.org/10.1371/journal.pone.0063129 Text en © 2013 Wang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Wang, Victor Bochuan
Chua, Song-Lin
Cao, Bin
Seviour, Thomas
Nesatyy, Victor J.
Marsili, Enrico
Kjelleberg, Staffan
Givskov, Michael
Tolker-Nielsen, Tim
Song, Hao
Loo, Joachim Say Chye
Yang, Liang
Engineering PQS Biosynthesis Pathway for Enhancement of Bioelectricity Production in Pseudomonas aeruginosa Microbial Fuel Cells
title Engineering PQS Biosynthesis Pathway for Enhancement of Bioelectricity Production in Pseudomonas aeruginosa Microbial Fuel Cells
title_full Engineering PQS Biosynthesis Pathway for Enhancement of Bioelectricity Production in Pseudomonas aeruginosa Microbial Fuel Cells
title_fullStr Engineering PQS Biosynthesis Pathway for Enhancement of Bioelectricity Production in Pseudomonas aeruginosa Microbial Fuel Cells
title_full_unstemmed Engineering PQS Biosynthesis Pathway for Enhancement of Bioelectricity Production in Pseudomonas aeruginosa Microbial Fuel Cells
title_short Engineering PQS Biosynthesis Pathway for Enhancement of Bioelectricity Production in Pseudomonas aeruginosa Microbial Fuel Cells
title_sort engineering pqs biosynthesis pathway for enhancement of bioelectricity production in pseudomonas aeruginosa microbial fuel cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659106/
https://www.ncbi.nlm.nih.gov/pubmed/23700414
http://dx.doi.org/10.1371/journal.pone.0063129
work_keys_str_mv AT wangvictorbochuan engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells
AT chuasonglin engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells
AT caobin engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells
AT seviourthomas engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells
AT nesatyyvictorj engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells
AT marsilienrico engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells
AT kjellebergstaffan engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells
AT givskovmichael engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells
AT tolkernielsentim engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells
AT songhao engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells
AT loojoachimsaychye engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells
AT yangliang engineeringpqsbiosynthesispathwayforenhancementofbioelectricityproductioninpseudomonasaeruginosamicrobialfuelcells