Cargando…

The Effect of an Intervening Promoter Nucleosome on Gene Expression

Nucleosomes, which are the basic packaging units of chromatin, are stably positioned in promoters upstream of most stress-inducible genes. These promoter nucleosomes are generally thought to repress gene expression due to exclusion; they prevent transcription factors from accessing their target site...

Descripción completa

Detalles Bibliográficos
Autores principales: Parikh, Rasesh Y., Kim, Harold D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659125/
https://www.ncbi.nlm.nih.gov/pubmed/23700413
http://dx.doi.org/10.1371/journal.pone.0063072
Descripción
Sumario:Nucleosomes, which are the basic packaging units of chromatin, are stably positioned in promoters upstream of most stress-inducible genes. These promoter nucleosomes are generally thought to repress gene expression due to exclusion; they prevent transcription factors from accessing their target sites on the DNA. However, the role of promoter nucleosomes that do not directly occlude transcription factor binding sites is not obvious. Here, we varied the stability of a non-occluding nucleosome positioned between a transcription factor binding site and the TATA box region in an inducible yeast promoter and measured downstream gene expression level. We found that gene expression level depends on the occupancy of the non-occluding nucleosome in a non-monotonic manner. We postulated that a non-occluding nucleosome can serve both as a vehicle of and a barrier to chromatin remodeling activity and built a quantitative, nonequilibrium model to explain the observed nontrivial effect of the intervening nucleosome. Our work sheds light on the dual role of nucleosome as a repressor and an activator and expands the standard model of gene expression to include irreversible promoter chromatin transitions.