Cargando…
Data mining in the Life Sciences with Random Forest: a walk in the park or lost in the jungle?
In the Life Sciences ‘omics’ data is increasingly generated by different high-throughput technologies. Often only the integration of these data allows uncovering biological insights that can be experimentally validated or mechanistically modelled, i.e. sophisticated computational approaches are requ...
Autores principales: | Touw, Wouter G., Bayjanov, Jumamurat R., Overmars, Lex, Backus, Lennart, Boekhorst, Jos, Wels, Michiel, van Hijum, Sacha A. F. T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659301/ https://www.ncbi.nlm.nih.gov/pubmed/22786785 http://dx.doi.org/10.1093/bib/bbs034 |
Ejemplares similares
-
Explaining microbial phenotypes on a genomic scale: GWAS for microbes
por: Dutilh, Bas E., et al.
Publicado: (2013) -
Draft Genome Sequences of 11 Lactococcus lactis subsp. cremoris Strains
por: Wels, Michiel, et al.
Publicado: (2017) -
Microbial bioinformatics for food safety and production
por: Alkema, Wynand, et al.
Publicado: (2016) -
Draft Genome Sequences of 24 Lactococcus lactis Strains
por: Backus, Lennart, et al.
Publicado: (2017) -
PanCGHweb: a web tool for genotype calling in pangenome CGH data
por: Bayjanov, Jumamurat R., et al.
Publicado: (2010)