Cargando…
Power Analysis of C-TDT for Small Sample Size Genome-Wide Association Studies by the Joint Use of Case-Parent Trios and Pairs
In family-based genetic association studies, it is possible to encounter missing genotype information for one of the parents. This leads to a study consisting of both case-parent trios and case-parent pairs. One of the approaches to this problem is permutation-based combined transmission disequilibr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659481/ https://www.ncbi.nlm.nih.gov/pubmed/23737858 http://dx.doi.org/10.1155/2013/235825 |
Sumario: | In family-based genetic association studies, it is possible to encounter missing genotype information for one of the parents. This leads to a study consisting of both case-parent trios and case-parent pairs. One of the approaches to this problem is permutation-based combined transmission disequilibrium test statistic. However, it is still unknown how powerful this test statistic is with small sample sizes. In this paper, a simulation study is carried out to estimate the power and false positive rate of this test across different sample sizes for a family-based genome-wide association study. It is observed that a statistical power of over 80% and a reasonable false positive rate estimate can be achieved even with a combination of 50 trios and 30 pairs when 2% of the SNPs are assumed to be associated. Moreover, even smaller samples provide high power when smaller percentages of SNPs are associated with the disease. |
---|