Cargando…

Platelet activation suppresses HIV-1 infection of T cells

BACKGROUND: Platelets, anucleate cell fragments abundant in human blood, can capture HIV-1 and platelet counts have been associated with viral load and disease progression. However, the impact of platelets on HIV-1 infection of T cells is unclear. RESULTS: We found that platelets suppress HIV-1 spre...

Descripción completa

Detalles Bibliográficos
Autores principales: Solomon Tsegaye, Theodros, Gnirß, Kerstin, Rahe-Meyer, Niels, Kiene, Miriam, Krämer-Kühl, Annika, Behrens, Georg, Münch, Jan, Pöhlmann, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660175/
https://www.ncbi.nlm.nih.gov/pubmed/23634812
http://dx.doi.org/10.1186/1742-4690-10-48
Descripción
Sumario:BACKGROUND: Platelets, anucleate cell fragments abundant in human blood, can capture HIV-1 and platelet counts have been associated with viral load and disease progression. However, the impact of platelets on HIV-1 infection of T cells is unclear. RESULTS: We found that platelets suppress HIV-1 spread in co-cultured T cells in a concentration-dependent manner. Platelets containing granules inhibited HIV-1 spread in T cells more efficiently than degranulated platelets, indicating that the granule content might exert antiviral activity. Indeed, supernatants from activated and thus degranulated platelets suppressed HIV-1 infection. Infection was inhibited at the stage of host cell entry and inhibition was independent of the viral strain or coreceptor tropism. In contrast, blockade of HIV-2 and SIV entry was less efficient. The chemokine CXCL4, a major component of platelet granules, blocked HIV-1 entry and neutralization of CXCL4 in platelet supernatants largely abrogated their anti-HIV-1 activity. CONCLUSIONS: Release of CXCL4 by activated platelets inhibits HIV-1 infection of adjacent T cells at the stage of virus entry. The inhibitory activity of platelet-derived CXCL4 suggests a role of platelets in the defense against infection by HIV-1 and potentially other pathogens.