Cargando…
Origin of the vasculature supporting growth of primary patient tumor xenografts
BACKGROUND: Studies of primary patient tumor xenografts grown in immunodeficient mice have shown that these tumors histologically and genetically closely resemble the original tumors. These patient xenograft models are becoming widely used for therapeutic efficacy studies. Because many therapies are...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660244/ https://www.ncbi.nlm.nih.gov/pubmed/23639003 http://dx.doi.org/10.1186/1479-5876-11-110 |
_version_ | 1782270525392814080 |
---|---|
author | Hylander, Bonnie L Punt, Natalie Tang, Haikuo Hillman, Joanna Vaughan, Mary Bshara, Wiam Pitoniak, Rose Repasky, Elizabeth A |
author_facet | Hylander, Bonnie L Punt, Natalie Tang, Haikuo Hillman, Joanna Vaughan, Mary Bshara, Wiam Pitoniak, Rose Repasky, Elizabeth A |
author_sort | Hylander, Bonnie L |
collection | PubMed |
description | BACKGROUND: Studies of primary patient tumor xenografts grown in immunodeficient mice have shown that these tumors histologically and genetically closely resemble the original tumors. These patient xenograft models are becoming widely used for therapeutic efficacy studies. Because many therapies are directed at tumor stromal components and because the tumor microenvironment also is known to influence the response of a tumor to therapy, it is important to understand the nature of the stroma and, in particular, the vascular supply of patient xenografts. METHODS: Patient tumor xenografts were established by implanting undisrupted pieces of patient tumors in SCID mice. For this study, formalin fixed, paraffin embedded specimens from several types of solid tumors were selected and, using species-specific antibodies which react with formalin fixed antigens, we analyzed the species origin of the stroma and blood vessels that supported tumor growth in these models. Additionally, we investigated the kinetics of the vascularization process in a colon tumor and a mesothelioma xenograft. In mice bearing a head and neck xenograft, a perfusion study was performed to compare the functionality of the human and mouse tumor vessels. RESULTS: In patient tumors which successfully engrafted, the human stroma and vessels which were engrafted as part of the original tumor did not survive and were no longer detectable at the time of first passage (15–25 weeks). Uniformly, the stroma and vessels supporting the growth of these tumors were of murine origin. The results of the kinetic studies showed that the loss of the human vessels and vascularization by host vessels occurred more rapidly in a colon tumor (by 3 weeks) than in a mesothelioma (by 9 weeks). Finally, the perfusion studies revealed that while mouse vessels in the periphery of the tumor were perfused, those in the central regions were rarely perfused. No vessels of human origin were detected in this model. CONCLUSIONS: In the tumors we investigated, we found no evidence that the human stromal cells and vessels contained in the original implant either survived or contributed in any substantive way to the growth of these xenografts. |
format | Online Article Text |
id | pubmed-3660244 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-36602442013-05-22 Origin of the vasculature supporting growth of primary patient tumor xenografts Hylander, Bonnie L Punt, Natalie Tang, Haikuo Hillman, Joanna Vaughan, Mary Bshara, Wiam Pitoniak, Rose Repasky, Elizabeth A J Transl Med Research BACKGROUND: Studies of primary patient tumor xenografts grown in immunodeficient mice have shown that these tumors histologically and genetically closely resemble the original tumors. These patient xenograft models are becoming widely used for therapeutic efficacy studies. Because many therapies are directed at tumor stromal components and because the tumor microenvironment also is known to influence the response of a tumor to therapy, it is important to understand the nature of the stroma and, in particular, the vascular supply of patient xenografts. METHODS: Patient tumor xenografts were established by implanting undisrupted pieces of patient tumors in SCID mice. For this study, formalin fixed, paraffin embedded specimens from several types of solid tumors were selected and, using species-specific antibodies which react with formalin fixed antigens, we analyzed the species origin of the stroma and blood vessels that supported tumor growth in these models. Additionally, we investigated the kinetics of the vascularization process in a colon tumor and a mesothelioma xenograft. In mice bearing a head and neck xenograft, a perfusion study was performed to compare the functionality of the human and mouse tumor vessels. RESULTS: In patient tumors which successfully engrafted, the human stroma and vessels which were engrafted as part of the original tumor did not survive and were no longer detectable at the time of first passage (15–25 weeks). Uniformly, the stroma and vessels supporting the growth of these tumors were of murine origin. The results of the kinetic studies showed that the loss of the human vessels and vascularization by host vessels occurred more rapidly in a colon tumor (by 3 weeks) than in a mesothelioma (by 9 weeks). Finally, the perfusion studies revealed that while mouse vessels in the periphery of the tumor were perfused, those in the central regions were rarely perfused. No vessels of human origin were detected in this model. CONCLUSIONS: In the tumors we investigated, we found no evidence that the human stromal cells and vessels contained in the original implant either survived or contributed in any substantive way to the growth of these xenografts. BioMed Central 2013-05-03 /pmc/articles/PMC3660244/ /pubmed/23639003 http://dx.doi.org/10.1186/1479-5876-11-110 Text en Copyright © 2013 Hylander et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Hylander, Bonnie L Punt, Natalie Tang, Haikuo Hillman, Joanna Vaughan, Mary Bshara, Wiam Pitoniak, Rose Repasky, Elizabeth A Origin of the vasculature supporting growth of primary patient tumor xenografts |
title | Origin of the vasculature supporting growth of primary patient tumor xenografts |
title_full | Origin of the vasculature supporting growth of primary patient tumor xenografts |
title_fullStr | Origin of the vasculature supporting growth of primary patient tumor xenografts |
title_full_unstemmed | Origin of the vasculature supporting growth of primary patient tumor xenografts |
title_short | Origin of the vasculature supporting growth of primary patient tumor xenografts |
title_sort | origin of the vasculature supporting growth of primary patient tumor xenografts |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660244/ https://www.ncbi.nlm.nih.gov/pubmed/23639003 http://dx.doi.org/10.1186/1479-5876-11-110 |
work_keys_str_mv | AT hylanderbonniel originofthevasculaturesupportinggrowthofprimarypatienttumorxenografts AT puntnatalie originofthevasculaturesupportinggrowthofprimarypatienttumorxenografts AT tanghaikuo originofthevasculaturesupportinggrowthofprimarypatienttumorxenografts AT hillmanjoanna originofthevasculaturesupportinggrowthofprimarypatienttumorxenografts AT vaughanmary originofthevasculaturesupportinggrowthofprimarypatienttumorxenografts AT bsharawiam originofthevasculaturesupportinggrowthofprimarypatienttumorxenografts AT pitoniakrose originofthevasculaturesupportinggrowthofprimarypatienttumorxenografts AT repaskyelizabetha originofthevasculaturesupportinggrowthofprimarypatienttumorxenografts |