Cargando…
Control of Translation and miRNA-Dependent Repression by a Novel Poly(A) Binding Protein, hnRNP-Q
Translation control often operates via remodeling of messenger ribonucleoprotein particles. The poly(A) binding protein (PABP) simultaneously interacts with the 3′ poly(A) tail of the mRNA and the eukaryotic translation initiation factor 4G (eIF4G) to stimulate translation. PABP also promotes miRNA-...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660254/ https://www.ncbi.nlm.nih.gov/pubmed/23700384 http://dx.doi.org/10.1371/journal.pbio.1001564 |
_version_ | 1782270527726944256 |
---|---|
author | Svitkin, Yuri V. Yanagiya, Akiko Karetnikov, Alexey E. Alain, Tommy Fabian, Marc R. Khoutorsky, Arkady Perreault, Sandra Topisirovic, Ivan Sonenberg, Nahum |
author_facet | Svitkin, Yuri V. Yanagiya, Akiko Karetnikov, Alexey E. Alain, Tommy Fabian, Marc R. Khoutorsky, Arkady Perreault, Sandra Topisirovic, Ivan Sonenberg, Nahum |
author_sort | Svitkin, Yuri V. |
collection | PubMed |
description | Translation control often operates via remodeling of messenger ribonucleoprotein particles. The poly(A) binding protein (PABP) simultaneously interacts with the 3′ poly(A) tail of the mRNA and the eukaryotic translation initiation factor 4G (eIF4G) to stimulate translation. PABP also promotes miRNA-dependent deadenylation and translational repression of target mRNAs. We demonstrate that isoform 2 of the mouse heterogeneous nuclear protein Q (hnRNP-Q2/SYNCRIP) binds poly(A) by default when PABP binding is inhibited. In addition, hnRNP-Q2 competes with PABP for binding to poly(A) in vitro. Depleting hnRNP-Q2 from translation extracts stimulates cap-dependent and IRES-mediated translation that is dependent on the PABP/poly(A) complex. Adding recombinant hnRNP-Q2 to the extracts inhibited translation in a poly(A) tail-dependent manner. The displacement of PABP from the poly(A) tail by hnRNP-Q2 impaired the association of eIF4E with the 5′ m(7)G cap structure of mRNA, resulting in the inhibition of 48S and 80S ribosome initiation complex formation. In mouse fibroblasts, silencing of hnRNP-Q2 stimulated translation. In addition, hnRNP-Q2 impeded let-7a miRNA-mediated deadenylation and repression of target mRNAs, which require PABP. Thus, by competing with PABP, hnRNP-Q2 plays important roles in the regulation of global translation and miRNA-mediated repression of specific mRNAs. |
format | Online Article Text |
id | pubmed-3660254 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36602542013-05-22 Control of Translation and miRNA-Dependent Repression by a Novel Poly(A) Binding Protein, hnRNP-Q Svitkin, Yuri V. Yanagiya, Akiko Karetnikov, Alexey E. Alain, Tommy Fabian, Marc R. Khoutorsky, Arkady Perreault, Sandra Topisirovic, Ivan Sonenberg, Nahum PLoS Biol Research Article Translation control often operates via remodeling of messenger ribonucleoprotein particles. The poly(A) binding protein (PABP) simultaneously interacts with the 3′ poly(A) tail of the mRNA and the eukaryotic translation initiation factor 4G (eIF4G) to stimulate translation. PABP also promotes miRNA-dependent deadenylation and translational repression of target mRNAs. We demonstrate that isoform 2 of the mouse heterogeneous nuclear protein Q (hnRNP-Q2/SYNCRIP) binds poly(A) by default when PABP binding is inhibited. In addition, hnRNP-Q2 competes with PABP for binding to poly(A) in vitro. Depleting hnRNP-Q2 from translation extracts stimulates cap-dependent and IRES-mediated translation that is dependent on the PABP/poly(A) complex. Adding recombinant hnRNP-Q2 to the extracts inhibited translation in a poly(A) tail-dependent manner. The displacement of PABP from the poly(A) tail by hnRNP-Q2 impaired the association of eIF4E with the 5′ m(7)G cap structure of mRNA, resulting in the inhibition of 48S and 80S ribosome initiation complex formation. In mouse fibroblasts, silencing of hnRNP-Q2 stimulated translation. In addition, hnRNP-Q2 impeded let-7a miRNA-mediated deadenylation and repression of target mRNAs, which require PABP. Thus, by competing with PABP, hnRNP-Q2 plays important roles in the regulation of global translation and miRNA-mediated repression of specific mRNAs. Public Library of Science 2013-05-21 /pmc/articles/PMC3660254/ /pubmed/23700384 http://dx.doi.org/10.1371/journal.pbio.1001564 Text en © 2013 Svitkin et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Svitkin, Yuri V. Yanagiya, Akiko Karetnikov, Alexey E. Alain, Tommy Fabian, Marc R. Khoutorsky, Arkady Perreault, Sandra Topisirovic, Ivan Sonenberg, Nahum Control of Translation and miRNA-Dependent Repression by a Novel Poly(A) Binding Protein, hnRNP-Q |
title | Control of Translation and miRNA-Dependent Repression by a Novel Poly(A) Binding Protein, hnRNP-Q |
title_full | Control of Translation and miRNA-Dependent Repression by a Novel Poly(A) Binding Protein, hnRNP-Q |
title_fullStr | Control of Translation and miRNA-Dependent Repression by a Novel Poly(A) Binding Protein, hnRNP-Q |
title_full_unstemmed | Control of Translation and miRNA-Dependent Repression by a Novel Poly(A) Binding Protein, hnRNP-Q |
title_short | Control of Translation and miRNA-Dependent Repression by a Novel Poly(A) Binding Protein, hnRNP-Q |
title_sort | control of translation and mirna-dependent repression by a novel poly(a) binding protein, hnrnp-q |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660254/ https://www.ncbi.nlm.nih.gov/pubmed/23700384 http://dx.doi.org/10.1371/journal.pbio.1001564 |
work_keys_str_mv | AT svitkinyuriv controloftranslationandmirnadependentrepressionbyanovelpolyabindingproteinhnrnpq AT yanagiyaakiko controloftranslationandmirnadependentrepressionbyanovelpolyabindingproteinhnrnpq AT karetnikovalexeye controloftranslationandmirnadependentrepressionbyanovelpolyabindingproteinhnrnpq AT alaintommy controloftranslationandmirnadependentrepressionbyanovelpolyabindingproteinhnrnpq AT fabianmarcr controloftranslationandmirnadependentrepressionbyanovelpolyabindingproteinhnrnpq AT khoutorskyarkady controloftranslationandmirnadependentrepressionbyanovelpolyabindingproteinhnrnpq AT perreaultsandra controloftranslationandmirnadependentrepressionbyanovelpolyabindingproteinhnrnpq AT topisirovicivan controloftranslationandmirnadependentrepressionbyanovelpolyabindingproteinhnrnpq AT sonenbergnahum controloftranslationandmirnadependentrepressionbyanovelpolyabindingproteinhnrnpq |