Cargando…
Optimizing Complexity Measures for fMRI Data: Algorithm, Artifact, and Sensitivity
INTRODUCTION: Complexity in the brain has been well-documented at both neuronal and hemodynamic scales, with increasing evidence supporting its use in sensitively differentiating between mental states and disorders. However, application of complexity measures to fMRI time-series, which are short, sp...
Autores principales: | Rubin, Denis, Fekete, Tomer, Mujica-Parodi, Lilianne R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660309/ https://www.ncbi.nlm.nih.gov/pubmed/23700424 http://dx.doi.org/10.1371/journal.pone.0063448 |
Ejemplares similares
-
Combining Classification with fMRI-Derived Complex Network Measures for Potential Neurodiagnostics
por: Fekete, Tomer, et al.
Publicado: (2013) -
Signal Fluctuation Sensitivity: An Improved Metric for Optimizing Detection of Resting-State fMRI Networks
por: DeDora, Daniel J., et al.
Publicado: (2016) -
The NIRS Analysis Package: Noise Reduction and Statistical Inference
por: Fekete, Tomer, et al.
Publicado: (2011) -
Using network dynamic fMRI for detection of epileptogenic foci
por: Nedic, Sanja, et al.
Publicado: (2015) -
Adaptive optimal basis set for BCG artifact removal in simultaneous EEG-fMRI
por: Marino, Marco, et al.
Publicado: (2018)