Cargando…

Shift from widespread symbiont infection of host tissues to specific colonization of gills in juvenile deep-sea mussels

The deep-sea mussel Bathymodiolus harbors chemosynthetic bacteria in its gills that provide it with nutrition. Symbiont colonization is assumed to occur in early life stages by uptake from the environment, but little is known about this process. In this study, we used fluorescence in situ hybridizat...

Descripción completa

Detalles Bibliográficos
Autores principales: Wentrup, Cecilia, Wendeberg, Annelie, Huang, Julie Y, Borowski, Christian, Dubilier, Nicole
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660682/
https://www.ncbi.nlm.nih.gov/pubmed/23389105
http://dx.doi.org/10.1038/ismej.2013.5
Descripción
Sumario:The deep-sea mussel Bathymodiolus harbors chemosynthetic bacteria in its gills that provide it with nutrition. Symbiont colonization is assumed to occur in early life stages by uptake from the environment, but little is known about this process. In this study, we used fluorescence in situ hybridization to examine symbiont distribution and the specificity of the infection process in juvenile B. azoricus and B. puteoserpentis (4–21 mm). In the smallest juveniles, we observed symbionts, but no other bacteria, in a wide range of epithelial tissues. This suggests that despite the widespread distribution of symbionts in many different juvenile organs, the infection process is highly specific and limited to the symbiotic bacteria. Juveniles⩾9 mm only had symbionts in their gills, indicating an ontogenetic shift in symbiont colonization from indiscriminate infection of almost all epithelia in early life stages to spatially restricted colonization of gills in later developmental stages.