Cargando…
OKVAR-Boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks
Motivation: Reverse engineering of gene regulatory networks remains a central challenge in computational systems biology, despite recent advances facilitated by benchmark in silico challenges that have aided in calibrating their performance. A number of approaches using either perturbation (knock-ou...
Autores principales: | Lim, Néhémy, Şenbabaoğlu, Yasin, Michailidis, George, d’Alché-Buc, Florence |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3661057/ https://www.ncbi.nlm.nih.gov/pubmed/23574736 http://dx.doi.org/10.1093/bioinformatics/btt167 |
Ejemplares similares
-
Inferring biological networks with output kernel trees
por: Geurts, Pierre, et al.
Publicado: (2007) -
Learning a Markov Logic network for supervised gene regulatory network inference
por: Brouard, Céline, et al.
Publicado: (2013) -
Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset
por: Auliac, Cédric, et al.
Publicado: (2008) -
Machine Learning in Systems Biology
por: d'Alché-Buc, Florence, et al.
Publicado: (2008) -
RAR/RXR binding dynamics distinguish pluripotency from differentiation associated cis-regulatory elements
por: Chatagnon, Amandine, et al.
Publicado: (2015)