Cargando…
Hypoxia inducible factor 1α-mediated LOX expression correlates with migration and invasion in epithelial ovarian cancer
This study investigated the role of LOX in promoting invasion and metastasis of epithelial ovarian cancer in a hypoxic environment and its specific signal transduction pathway. Immunohistochemical detection of HIF-1α and LOX protein expression was performed on formalin-fixed paraffin sections of nor...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3661201/ https://www.ncbi.nlm.nih.gov/pubmed/23545606 http://dx.doi.org/10.3892/ijo.2013.1878 |
Sumario: | This study investigated the role of LOX in promoting invasion and metastasis of epithelial ovarian cancer in a hypoxic environment and its specific signal transduction pathway. Immunohistochemical detection of HIF-1α and LOX protein expression was performed on formalin-fixed paraffin sections of normal ovary, benign ovarian tumors, borderline and malignant epithelial ovarian tumor paraffin sample, using Mann-Whitney U test for independent comparisons and Wilcoxon signed-ranks test for paired comparisons. HIF-1α and LOX were knocked down in epithelial ovarian cancer cells (EOC), and HIF-1α/LOX regulation mechanism and LOX catalytic activity under hypoxia/reoxygenation microenvironment were explored. Cell migration and invasion ability in LOX inhibited HO8910 cells were investigated under hypoxia/reoxygenation conditions, using matrigel cell invasion and migration assays. We found that HIF-1α and LOX are highly expressed in epithelial ovarian cancer tissues, and the expression of both proteins is significantly correlated with the tumor grade, tumor diameter and lymph node metastasis. HIF-1α expression is positively correlated with the expression of LOX. Specifically, the expression of LOX and HIF-1α markedly increases under hypoxic conditions and decreases after reoxygenation. siRNA knockdown of LOX or β-aminoproprionitrile (βAPN), an inhibitor of LOX activity, that attenuates LOX activity, downregulates HIF-1α protein expression and inhibits HO8910 migratory and invasive abilities. LOX catalytic activity is significantly reduced under hypoxic conditions. Moreover, EOC cells display a marked increase in LOX-dependent FAK/AKT activation and cell migration following hypoxia/reoxygenation. Collectively, our study demonstrates that the hypoxia-HIF-1α, LOX-FAK/AKT pathway regulates the migration and invasion of epithelial ovarian cancer cells under hypoxia/reoxygenation conditions, thus, promoting metastasis of ovarian cancer. |
---|