Cargando…
The Caenorhabditis elegans voltage-gated calcium channel subunits UNC-2 and UNC-36 and the calcium-dependent kinase UNC-43/CaMKII regulate neuromuscular junction morphology
BACKGROUND: The conserved Caenorhabditis elegans proteins NID-1/nidogen and PTP-3A/LAR-RPTP function to efficiently localize the presynaptic scaffold protein SYD-2/α-liprin at active zones. Loss of function in these molecules results in defects in the size, morphology and spacing of neuromuscular ju...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3661369/ https://www.ncbi.nlm.nih.gov/pubmed/23663262 http://dx.doi.org/10.1186/1749-8104-8-10 |
_version_ | 1782270663250149376 |
---|---|
author | Caylor, Raymond C Jin, Yishi Ackley, Brian D |
author_facet | Caylor, Raymond C Jin, Yishi Ackley, Brian D |
author_sort | Caylor, Raymond C |
collection | PubMed |
description | BACKGROUND: The conserved Caenorhabditis elegans proteins NID-1/nidogen and PTP-3A/LAR-RPTP function to efficiently localize the presynaptic scaffold protein SYD-2/α-liprin at active zones. Loss of function in these molecules results in defects in the size, morphology and spacing of neuromuscular junctions. RESULTS: Here we show that the Ca(v)2-like voltage-gated calcium channel (VGCC) proteins, UNC-2 and UNC-36, and the calmodulin kinase II (CaMKII), UNC-43, function to regulate the size and morphology of presynaptic domains in C. elegans. Loss of function in unc-2, unc-36 or unc-43 resulted in slightly larger GABAergic neuromuscular junctions (NMJs), but could suppress the synaptic morphology defects found in nid-1/nidogen or ptp-3/LAR mutants. A gain-of-function mutation in unc-43 caused defects similar to those found in nid-1 mutants. Mutations in egl-19, Ca(v)1-like, or cca-1, Ca(v)3-like, α1 subunits, or the second α2/δ subunit, tag-180, did not suppress nid-1, suggesting a specific interaction between unc-2 and the synaptic extracellular matrix (ECM) component nidogen. Using a synaptic vesicle marker in time-lapse microscopy studies, we observed GABAergic motor neurons adding NMJ-like structures during late larval development. The synaptic bouton addition appeared to form in at least two ways: (1) de novo formation, where a cluster of vesicles appeared to coalesce, or (2) when a single punctum became enlarged and then divided to form two discrete fluorescent puncta. In comparison to wild type animals, we found unc-2 mutants exhibited reduced NMJ dynamics, with fewer observed divisions during a similar stage of development. CONCLUSIONS: We identified UNC-2/UNC-36 VGCCs and UNC-43/CaMKII as regulators of C. elegans synaptogenesis. UNC-2 has a modest role in synapse formation, but a broader role in regulating dynamic changes in the size and morphology of synapses that occur during organismal development. During the late 4th larval stage (L4), wild type animals exhibit synaptic morphologies that are similar to those found in animals lacking NID-1/PTP-3 adhesion, as well as those with constitutive activation of UNC-43. Genetic evidence indicates that the VGCCs and the NID-1/PTP-3 adhesion complex provide opposing functions in synaptic development, suggesting that modulation of synaptic adhesion may underlie synapse development in C. elegans. |
format | Online Article Text |
id | pubmed-3661369 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-36613692013-05-23 The Caenorhabditis elegans voltage-gated calcium channel subunits UNC-2 and UNC-36 and the calcium-dependent kinase UNC-43/CaMKII regulate neuromuscular junction morphology Caylor, Raymond C Jin, Yishi Ackley, Brian D Neural Dev Research Article BACKGROUND: The conserved Caenorhabditis elegans proteins NID-1/nidogen and PTP-3A/LAR-RPTP function to efficiently localize the presynaptic scaffold protein SYD-2/α-liprin at active zones. Loss of function in these molecules results in defects in the size, morphology and spacing of neuromuscular junctions. RESULTS: Here we show that the Ca(v)2-like voltage-gated calcium channel (VGCC) proteins, UNC-2 and UNC-36, and the calmodulin kinase II (CaMKII), UNC-43, function to regulate the size and morphology of presynaptic domains in C. elegans. Loss of function in unc-2, unc-36 or unc-43 resulted in slightly larger GABAergic neuromuscular junctions (NMJs), but could suppress the synaptic morphology defects found in nid-1/nidogen or ptp-3/LAR mutants. A gain-of-function mutation in unc-43 caused defects similar to those found in nid-1 mutants. Mutations in egl-19, Ca(v)1-like, or cca-1, Ca(v)3-like, α1 subunits, or the second α2/δ subunit, tag-180, did not suppress nid-1, suggesting a specific interaction between unc-2 and the synaptic extracellular matrix (ECM) component nidogen. Using a synaptic vesicle marker in time-lapse microscopy studies, we observed GABAergic motor neurons adding NMJ-like structures during late larval development. The synaptic bouton addition appeared to form in at least two ways: (1) de novo formation, where a cluster of vesicles appeared to coalesce, or (2) when a single punctum became enlarged and then divided to form two discrete fluorescent puncta. In comparison to wild type animals, we found unc-2 mutants exhibited reduced NMJ dynamics, with fewer observed divisions during a similar stage of development. CONCLUSIONS: We identified UNC-2/UNC-36 VGCCs and UNC-43/CaMKII as regulators of C. elegans synaptogenesis. UNC-2 has a modest role in synapse formation, but a broader role in regulating dynamic changes in the size and morphology of synapses that occur during organismal development. During the late 4th larval stage (L4), wild type animals exhibit synaptic morphologies that are similar to those found in animals lacking NID-1/PTP-3 adhesion, as well as those with constitutive activation of UNC-43. Genetic evidence indicates that the VGCCs and the NID-1/PTP-3 adhesion complex provide opposing functions in synaptic development, suggesting that modulation of synaptic adhesion may underlie synapse development in C. elegans. BioMed Central 2013-05-10 /pmc/articles/PMC3661369/ /pubmed/23663262 http://dx.doi.org/10.1186/1749-8104-8-10 Text en Copyright © 2013 Caylor et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Caylor, Raymond C Jin, Yishi Ackley, Brian D The Caenorhabditis elegans voltage-gated calcium channel subunits UNC-2 and UNC-36 and the calcium-dependent kinase UNC-43/CaMKII regulate neuromuscular junction morphology |
title | The Caenorhabditis elegans voltage-gated calcium channel subunits UNC-2 and UNC-36 and the calcium-dependent kinase UNC-43/CaMKII regulate neuromuscular junction morphology |
title_full | The Caenorhabditis elegans voltage-gated calcium channel subunits UNC-2 and UNC-36 and the calcium-dependent kinase UNC-43/CaMKII regulate neuromuscular junction morphology |
title_fullStr | The Caenorhabditis elegans voltage-gated calcium channel subunits UNC-2 and UNC-36 and the calcium-dependent kinase UNC-43/CaMKII regulate neuromuscular junction morphology |
title_full_unstemmed | The Caenorhabditis elegans voltage-gated calcium channel subunits UNC-2 and UNC-36 and the calcium-dependent kinase UNC-43/CaMKII regulate neuromuscular junction morphology |
title_short | The Caenorhabditis elegans voltage-gated calcium channel subunits UNC-2 and UNC-36 and the calcium-dependent kinase UNC-43/CaMKII regulate neuromuscular junction morphology |
title_sort | caenorhabditis elegans voltage-gated calcium channel subunits unc-2 and unc-36 and the calcium-dependent kinase unc-43/camkii regulate neuromuscular junction morphology |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3661369/ https://www.ncbi.nlm.nih.gov/pubmed/23663262 http://dx.doi.org/10.1186/1749-8104-8-10 |
work_keys_str_mv | AT caylorraymondc thecaenorhabditiselegansvoltagegatedcalciumchannelsubunitsunc2andunc36andthecalciumdependentkinaseunc43camkiiregulateneuromuscularjunctionmorphology AT jinyishi thecaenorhabditiselegansvoltagegatedcalciumchannelsubunitsunc2andunc36andthecalciumdependentkinaseunc43camkiiregulateneuromuscularjunctionmorphology AT ackleybriand thecaenorhabditiselegansvoltagegatedcalciumchannelsubunitsunc2andunc36andthecalciumdependentkinaseunc43camkiiregulateneuromuscularjunctionmorphology AT caylorraymondc caenorhabditiselegansvoltagegatedcalciumchannelsubunitsunc2andunc36andthecalciumdependentkinaseunc43camkiiregulateneuromuscularjunctionmorphology AT jinyishi caenorhabditiselegansvoltagegatedcalciumchannelsubunitsunc2andunc36andthecalciumdependentkinaseunc43camkiiregulateneuromuscularjunctionmorphology AT ackleybriand caenorhabditiselegansvoltagegatedcalciumchannelsubunitsunc2andunc36andthecalciumdependentkinaseunc43camkiiregulateneuromuscularjunctionmorphology |